论文解读 | IROS 2022:MV6D:在RGB-D图像上使用深度逐点投票网络进行多视角6D姿态估计

原创 | 文 BFT机器人

01 研究背景

在计算机视觉领域,6D姿态估计是一种重要的任务,用于确定物体在3D空间中的位置和方向。它在许多应用领域具有广泛的应用,如机器人操作、虚拟现实、增强现实、物体跟踪等。

然而,传统的6D姿态估计方法存在一些限制。

这些方法通常只使用单个视角的相机数据或点云数据进行估计,忽略了其他视角的信息。这种单一视角的方法容易受到其他物体的遮挡影响,导致估计结果不准确。当物体被其他物体遮挡部分或部分视角无法观测到时,传统方法可能无法准确地估计物体的姿态。

为了解决这个问题,本文提出了一种新颖的多视角6D姿态估计方法,称为MV6D。

该方法基于RGB-D图像从多个视角准确地预测杂乱场景中所有物体的6D姿态。MV6D使用了一个深度点投票网络(PVN3D)来预测目标物体关键点,并通过密集融合层(DenseFusion)将多个视角信息融合起来以提高精度。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值