The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
思路: 算法笔记的方法。把不大于的n的i^p的数存到一个数组里,在这个数组里深搜,可以重复使用,所以每次从本身出发深搜,知道搜不到就换另外一个数进行深搜。
程序:
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
int n,k,p,maxFacSum = -1;
vector<int> fac,ans,temp;
int power(int x)
{
int ans = 1;
for(int i = 0; i < p; i++)
{
ans *= x;
}
return ans;
}
void init()
{
int i = 0,temp = 0;
while(temp <= n)
{
fac.push_back(temp);
temp = power(++i);
}
}
void dfs(int index,int nowK,int sum,int facSum)
{
if(sum == n && nowK == k)
{
if(facSum > maxFacSum)
{
maxFacSum = facSum;
ans = temp;
}
return;
}
if(sum > n || nowK > k) return;
if(index - 1 >= 0)
{
temp.push_back(index);
dfs(index,nowK+1,sum+fac[index],facSum+index);//“选的分支”
temp.pop_back();
dfs(index-1,nowK,sum,facSum);//"不选的分支"
}
}
int main()
{
scanf("%d%d%d",&n,&k,&p);
init();
dfs(fac.size()-1,0,0,0);
if(maxFacSum == -1)
printf("Impossible\n");
else
{
printf("%d = %d^%d",n,ans[0],p);
for(int i = 1; i < ans.size(); i++)
{
printf(" + %d^%d",ans[i],p);
}
}
return 0;
}