洛谷P1111修复公路题解

本文解析洛谷试炼场并查集板块首题,介绍使用Kruskal算法解决最小生成树问题的方法,重点讲解如何通过并查集判断边的加入是否形成环,以及在所有道路同时修复的情况下求解最长边,确保图中任意两点可达。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跳转理解题意

这道题是洛谷试炼场并查集板块的第一题,但却是一道最小生成树,至于为什么在并查集的版块里,应该是kruskal算法运用到了并查集判断如果添加某条边是否会产生环,题目中要求如何在最短时间内使图中任意两个点都能互相到达,因为所有道路可以同时开始修复,所以题目就是让我们求最小生成树中最长的那条边。这是一道最小生成树(kruskal)的板子题,同时要注意公路无法修建的情况,即原图不连通不存在最小生成树的情况

//AC代码:
#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

struct node
{
	int st,ed,t;
};node edge[100005];
int n,m,f[1005],cnt,ans;
bool flag;

int comp(node x,node y)
{
	return x.t<y.t;
}

int find(int k)
{
	if(f[k]==k) return f[k];
	return f[k]=find(f[k]);
}

void kruskal()
{
	for(int i=1;i<=n;i++)
	    f[i]=i;
	for(int i=1;i<=m;i++)
	{
		int f1=find(edge[i].st);
		int f2=find(edge[i].ed);
		if(f1!=f2)
		{
			f[f1]=f2;
			cnt++;
		}
		if(cnt==n-1)
		{
			ans=edge[i].t;
			break;
		}
	} 
	if(cnt<n-1)
	{
		printf("-1");
		flag=true;
	}
}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	    scanf("%d%d%d",&edge[i].st,&edge[i].ed,&edge[i].t);
	sort(edge+1,edge+m+1,comp);
	kruskal();
	if(!flag) printf("%d",ans);
	return 0;
}
基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
<think>好的,我现在需要帮用户解决P1656炸铁路的问题。用户想要题解、代码、解析和思路。首先,我应该回顾一下题目内容。根据引用[2],题目可能涉及铁路被炸的情况,用户提供的示例代码中有结构体存储铁路的起点、终点和状态,可能是在处理图的连通性问题。 用户提供的引用[2]中有一段代码,看起来像是在处理输入的铁路数据,每条铁路初始状态为未被炸(w=1)。这可能意味着问题需要找出关键边,也就是炸掉后会影响图的连通性的边。这类问题通常可以通过Tarjan算法求桥来解决,因为桥是图中的边,移除后会导致图不再连通。 接下来,我需要确认P1656的具体要求。根据常见的算法题,炸铁路很可能就是寻找无向图中的所有桥。桥的定义是,如果删除这条边,图会被分成两个或多个连通块。Tarjan算法可以在O(V+E)的时间内找到所有桥,这应该是解题的关键。 然后,我需要考虑如何构建图结构。通常,使用邻接表来存储图,每个节点有一个列表记录其连接的边。在实现Tarjan算法时,需要记录每个节点的发现时间和low值,用于判断是否为桥。 接下来,代码实现部分需要包括以下步骤: 1. 读取输入,构建邻接表。 2. 使用Tarjan算法遍历所有节点,找出所有桥。 3. 将找到的桥按题目要求的顺序输出,通常是按端点升序排列,如果端点相同则按另一端升序。 在引用[3]中提到拓扑排序用于车站分级问题,但这里的问题不同,可能需要不同的方法。因此,引用[3]和[1]可能不适用,但引用[2]中的代码结构可能帮助理解输入处理。 用户可能需要详细的步骤解释,比如如何应用Tarjan算法,如何处理输入输出,以及如何排序结果。此外,需要确保代码正确,符合题目的要求,比如边的输出顺序。 最后,验证思路是否正确。例如,Tarjan算法确实用于找桥,而题目要求找出所有这样的边,因此这个方法是合适的。然后,编写代码时需要注意无向图的处理,避免重复访问同一条边,通常通过记录父节点来实现。 总结思路:使用Tarjan算法寻找无向图中的所有桥,并按规则排序输出。</think>### P1656 炸铁路 题解 #### 题目分析 题目要求找到所有「关键铁路」,即删除该铁路后会导致图的连通性被破坏的边。这类问题对应图论中的**桥(割边)**问题,可以通过**Tarjan算法**高效解决[^5]。 #### 算法思路 1. **桥的定义**:无向图中若删除边 $(u,v)$ 后图不再连通,则该边为桥。 2. **Tarjan算法**:通过DFS遍历图,记录每个顶点的访问顺序(`dfn`)和能回溯到的最早祖先(`low`)。若对于边 $(u,v)$,满足 `low[v] > dfn[u]`,则说明 $(u,v)$ 是桥[^5]。 #### 代码实现 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <cstring> using namespace std; const int MAXN = 155; vector<int> graph[MAXN]; vector<pair<int, int>> bridges; int dfn[MAXN], low[MAXN], parent[MAXN]; int timer = 0; void tarjan(int u) { dfn[u] = low[u] = ++timer; for (int v : graph[u]) { if (!dfn[v]) { parent[v] = u; tarjan(v); low[u] = min(low[u], low[v]); if (low[v] > dfn[u]) { // 找到桥 bridges.push_back({min(u, v), max(u, v)}); } } else if (v != parent[u]) { low[u] = min(low[u], dfn[v]); } } } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); } for (int i = 1; i <= n; ++i) { if (!dfn[i]) { tarjan(i); } } sort(bridges.begin(), bridges.end()); for (auto &bridge : bridges) { cout << bridge.first << " " << bridge.second << endl; } return 0; } ``` #### 代码解析 1. **输入处理**:构建无向图的邻接表。 2. **Tarjan核心**:DFS遍历时维护`dfn`和`low`数组,判断桥的条件。 3. **结果排序**:将桥按字典序排序后输出,满足题目要求[^2]。 #### 复杂度分析 - 时间复杂度:$O(N + M)$,其中 $N$ 为顶点数,$M$ 为边数。 - 空间复杂度:$O(N + M)$,用于存储图结构和中间数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值