Hive架构
- 用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)
- 元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore。
- Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
- 驱动器:Driver
(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):对逻辑执行计划进行优化。
(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive运行原理
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
其实,还可以这样理解:Hive要做的就是将SQL翻译成MapReduce程序代码。实际上,Hive内置了很多Operator,每个Operator完成一个特定的计算过程,Hive将这些Operator构造成一个有向无环图DAG,然后根据这些Operator之间是否存在shuffle将其封装到map或者reduce函数中,之后就可以提交给MapReduce执行了。
内部表与外部表
不同点
1 外部表不会加载数据到Hive,减少数据传输、数据还能共享。
共享的理解就是:当我们删除一个内部表时,Hive 也会删除这个表中数据。内部表不适合和其他工具共享数据。
2 Hive创建内部表时,会将数据移动到数据仓库指向的路径。
创建外部表时,仅记录数据所在的路径,不对数据的位置做任何改变。
在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。
场景选择
在公司中绝大多数场景都是外部表。
自己使用的临时表,才会创建内部表。
Hive分区与分桶
Hive分区
是按照数据表的某列或者某些列分为多区,在hive存储上是hdfs文件,也就是文件夹形式。现在最常用的跑T+1数据,按当天时间分区的较多。
把每天通过sqoop或者datax拉取的一天的数据存储一个区,也就是所谓的文件夹与文件。在查询时只要指定分区字段的值就可以直接从该分区查找即可。创建分区表的时候,要通过关键字 partitioned by (column name string)声明该表是分区表,并且是按照字段column name进行分区,column name值一致的所有记录存放在一个分区中,分区属性name的类型是string类型。
当然,可以依据多个列进行分区,即对某个分区的数据按照某些列继续分区。
向分区表导入数据的时候,要通过关键字partition((column name="xxxx")显示声明数据要导入到表的哪个分区
设置分区的影响
- 首先是hive本身对分区数有限制,不过可以修改限制的数量。
set hive.exec.dynamic.partition=true;
set hive.exec.max.dynamic.partitions=1000;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.parallel.thread.number=264;
- hdfs对单个目录下的目录数量或者文件数量也是有限制的,也是可以修改的;
- NN的内存肯定会限制,这是最重要的,如果分区数很大,会影响NN服务,进而影响一系列依赖于NN的服务。所以最好合理设置分区规则,对小文件也可以定期合并,减少NN的压力。
Hive的分桶
在分区数量过于庞大以至于可能导致文件系统崩溃时,我们就需要使用分桶来解决问题
分桶是相对分区进行更细粒度的划分。分桶则是指定分桶表的某一列,让该列数据按照哈希取模的方式随机、均匀地分发到各个桶文件中。因为分桶操作需要根据某一列具体数据来进行哈希取模操作,故指定的分桶列必须基于表中的某一列(字段) 要使用关键字clustered by 指定分区依据的列名,还要指定分为多少桶:
create table test(id int,name string) cluster by (id) into 5 buckets .......
insert into buck select id ,name from