系列十五、SpringBoot的启动原理分析

本文详细剖析了SpringBoot启动过程,从初始化SpringApplication到创建上下文、预初始化、加载自动配置、构建IOC容器及调用监听器,揭示了其背后的核心机制。

一、概述

        所谓SpringBoot的启动原理,翻译成大白话就是"当我们在主启动类上运行run方法时,SpringBoot底层到底做了什么事情,能够帮助我们启动一个Spring的web应用",上边用大白话解释了一下什么是SpringBoot的启动原理,那么它的启动原理到底是什么呢?下面请看源码分析:

        1、初始化SpringApplication;

        2、运行run()方法;

        3、读取环境变量、配置信息...

        4、创建SpringApplication上下文:ServletWebServerApplicationContext

        5、预初始化上下文:将启动类作为配置类进行读取===>将配置类注册为BeanDefinition;

        6、调用refreshContext加载IOC容器

                invokeBeanFactoryPostProcessor:解析@Import,加载所有的自动配置类;

                onRefresh:创建内置的Servlet容器;

        7、调用各种各样的监听器对外扩展;

调用链路如下:


       

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值