这个用法比较重要,可以做subtokenizer和raw_text的对比和复原
text2tokens = self.tokenizer.tokenize(text, add_special_tokens=self.add_special_tokens)
text_ = text.split(' ')
subwords = list(map(tokenizer.tokenize, text_))
class Preprocessor(object):
def init(self, tokenizer):
super(Preprocessor, self).init()
self.tokenizer = tokenizer
self.add_special_tokens = True
def get_ent2token_spans(self, text, entity_list):
"""实体列表转为token_spans
Args:
text (str): 原始文本
entity_list (list): [(start, end, ent_type),(start, end, ent_type)...]
"""
ent2token_spans = []
inputs = self.tokenizer(text, add_special_tokens=True, return_offsets_mapping=True)
token2char_span_mapping = inputs["offset_mapping"]
text2tokens = self.tokenizer.tokenize(text, add_special_tokens=self.add_special_tokens)
text_ = text.split(' ')
subwords = list(map(tokenizer.tokenize, text_))
toks, index = get_index(text2tokens)
for en_span in entity_list:
if en_span[0]!=0:
subh = sum([len(i) for i in subwords[:(en_span[0] )]])
subt = sum([len(i) for i in subwords[:(en_span[0]+1)]])
else:
subh = sum([len(i) for i in subwords[:(en_span[0] )]])
subt = sum([len(i) for i in subwords[:(en_span[0]+1)]])
if en_span[1]!=0:
objh = sum([len(i) for i in subwords[:(en_span[1])]])
objt = sum([len(i) for i in subwords[:(en_span[1]+1)]])
else:
objh = sum([len(i) for i in subwords[:(en_span[1] )]])
objt = sum([len(i) for i in subwords[:(en_span[1]+1)]])
start_index = (subh + 1, subt + 1)
end_index = (objh + 1, objt + 1)
token_span = (start_index, end_index, en_span[2])
ent2token_spans.append(token_span)
return ent2token_spans
本文介绍如何使用tokenizer进行text2tokens处理,并通过实例演示如何将实体列表转化为token_spans,重点在于subtokenizer与raw_text的对比与实际应用中的复原技巧。
1860

被折叠的 条评论
为什么被折叠?



