numpy.tile
numpy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.
构造一个数组,通过重复数组 A,重复的次数由 reps 给出。
If reps has length d, the result will have dimension of max(d, A.ndim).
If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A to d-dimensions manually before calling this function.
If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as (1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting operations and functions.
Parameters:
A : array_like
The input array.
reps : array_like
The number of repetitions of A along each axis.
axis 轴
Returns:
c : ndarray
The tiled output array.
Examples
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],)
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
reps的数字从后往前分别对应A的第N个维度的重复次数。如tile(A,2)表示A的第一个维度重复2遍,tile(A,(2,3))表示A的第一个维度重复3遍,然后第二个维度重复2遍,tile(A,(2,2,3))表示A的第一个维度重复3遍,第二个维度重复2遍,第三个维度重复2遍。
本文详细介绍了 numpy 中的 tile 函数用法,该函数可通过指定重复次数来构造新数组。文章提供了多个示例,展示了如何在一维、二维及更高维度上使用 tile 函数重复数组。
1829

被折叠的 条评论
为什么被折叠?



