HDU 5934 Bomb 【强连通缩点】

本文介绍了一种通过构建图模型解决多个爆炸物覆盖问题的方法,旨在以最低成本引爆所有爆炸物。利用图的强连通分量进行缩点处理,并找到入度为0的节点来确定引爆策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
There are N bombs needing exploding.

Each bomb has three attributes: exploding radius ri, position (xi,yi) and lighting-cost ci which means you need to pay ci cost making it explode.

If a un-lighting bomb is in or on the border the exploding area of another exploding one, the un-lighting bomb also will explode.

Now you know the attributes of all bombs, please use the minimum cost to explode all bombs.
 

Input
First line contains an integer T, which indicates the number of test cases.

Every test case begins with an integers N, which indicates the numbers of bombs.

In the following N lines, the ith line contains four intergers xi, yi, ri and ci, indicating the coordinate of ith bomb is (xi,yi), exploding radius is ri and lighting-cost is ci.

Limits
- 1T20
- 1N1000
- 108xi,yi,ri108
- 1ci104
 

Output
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the minimum cost.
 

Sample Input
1 5 0 0 1 5 1 1 1 6 0 1 1 7 3 0 2 10 5 0 1 4
 

Sample Output
Case #1: 15
对图进行强联通后缩点寻找入度为0的点,在入度为0的联通快中寻找价值最小的的点值即为该强连通分量的值;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mms(x, y) memset(x, y, sizeof x)
const int MAX = 1500;
const int INF = 0x3f3f3f3f;
struct node
{
    ll x, y, r;
    int c;
} a[MAX];
struct edge
{
    int to, next;
} e[MAX * MAX * 2];
int num, cnt, pos, sig, n;
bool vis[MAX];
int ans[MAX];
int dfn[MAX];
int low[MAX];
int in[MAX];
int head[MAX];
int col[MAX];
int Stack[MAX];
void add(int u, int v)
{
    e[num] = {v, head[u]};
    head[u] = num++;
}
void init()
{
    mms(ans, INF);
    mms(vis, 0);
    mms(low, 0);
    mms(dfn, 0);
    mms(in, 0);
    mms(col, 0);
    mms(Stack, 0);
    cnt = pos = sig = 0;
}
void tarjan(int u)
{
    int v;
    low[u] = dfn[u] = ++cnt;
    Stack[pos++] = u;
    vis[u] = 1;
    for(int i = head[u]; i != -1; i = e[i].next)
    {
        v = e[i].to;
        if(!dfn[v])
        {
            tarjan(v);
            if(low[u] > low[v])
                low[u] = low[v];
        }
        else if(vis[v] && low[u] > dfn[v])
            low[u] = dfn[v];
    }
    if(low[u] == dfn[u])
    {
        sig++;
        do
        {
            v = Stack[--pos];
            vis[v] = 0;
            col[v] = sig;
        }
        while(u != v);
    }
}
int main()
{
    int N, kase = 0;
    scanf("%d", &N);
    while(N--)
    {
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%lld%lld%lld%lld", &a[i].x, &a[i].y, &a[i].r, &a[i].c);
        num = 0;
        mms(head, -1);
        for(int i = 1; i <= n; i++)
        {
            for(int j = i + 1; j <= n; j++)
            {
                ll x = a[i].x - a[j].x;
                ll y = a[i].y - a[j].y;
                ll dis = x * x + y * y;
                ll dis1 = a[i].r * a[i].r;
                ll dis2 = a[j].r * a[j].r;
                if(dis <= dis1)
                    add(i, j);
                if(dis <= dis2)
                    add(j, i);
            }
        }
        init();
        for(int i = 1; i <= n; i++)
            if(!dfn[i])
                tarjan(i);
        for(int i = 1; i <= n; i++)
        {
            for(int j = head[i]; j != -1; j = e[j].next)
            {
                int x = e[j].to;
                if(col[i] != col[x])
                    in[col[x]]++;
            }
        }
        for(int i = 1; i <= n; i++)
        {
            int x = col[i];
            if(in[x] == 0)
                ans[x] = min(ans[x], a[i].c);
        }
        int res = 0;
        for(int i = 1; i <= sig; i++)
            if(in[i] == 0)
                res += ans[i];
        printf("Case #%d: %d\n", ++kase, res);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值