Spring Cloud Alibaba-服务雪崩效应

本文探讨了微服务架构中的服务雪崩效应及其产生的原因,介绍了四种常见的雪崩解决方案:超时处理、舱壁模式、熔断降级和流量控制。同时对比了几种服务保护技术,包括Hystrix、Resilience4J和Sentinel。

一、高并发带来的问题

        在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。

二、服务雪崩效应

        在分布式系统中,由于网络原因或自身的原因,服务一般无法保证 100% 可用。如果一个服务出现了问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等待,进而导致服务瘫痪

        由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是服务故障的 雪崩效应 

         雪崩发生的原因多种多样,有不合理的容量设计,或者是高并发下某一个方法响应变慢,亦或是某台机器的资源耗尽。我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"。

三、如何解决雪崩?

解决雪崩问题的常见方式有四种:

1.超时处理:

设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

 2.舱壁模式:

限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

3. 熔断降级:

由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

4.流量控制:

限制业务访问的QPS,避免服务因流量的突增而故障。

 四、服务保护技术对比

Hystrix

Hystrix是由Netflix开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止级联失败,从而提升系统的可用性与容错性。

Resilience4J

Resilicence4J一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是Hystrix官方推荐的替代产品。不仅如此,Resilicence4j还原生支持Spring Boot 1.x/2.x,而且监控也支持和 prometheus等多款主流产品进行整合。

Sentinel

Sentinel 是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。

 

 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值