Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include<iostream> #include<cmath> #include<algorithm> #include<stack> #include<cstring> using namespace std; int mark[21]; int prinum[]={2,3,5,7,11,13,17,19,23,29,31,37}; int n,rlt[21]; int isprinum(int nn) { for(int i=0;i<12;i++) { if(nn==prinum[i]) return 1; } return 0; } int dfs(int a, int b, int flag) { if(!isprinum(a+b)) return 0; rlt[flag]=b; if(flag==n && isprinum(b+1)) { for(int i=1;i<n;i++) { cout<<rlt[i]<<" "; } cout<<rlt[n]<<endl; return 1; } mark[b]=1; int i; for(i=2;i<=n;i++) { if(mark[i]==0 && dfs(b,i,flag+1)) break; } mark[b]=0;//?为什么在这里要还原 return 0; } int main() { int tt=1; rlt[1]=1; memset(mark,0,sizeof(mark)); while(cin>>n && n>0 && n<20) { printf("Case %d:\n",tt++); if(n==1) { printf("1\n"); } else { for(int i=2;i<=n;i++) { dfs(1,i,2); } } cout<<endl; } return 0; }