训练/开发/测试集划分(Train/dev/test distributions)
设立训练集,开发集和测试集的方式大大影响了你或者你的团队在建立机器学习应用方面取得进展的速度。同样的团队,即使是大公司里的团队,在设立这些数据集的方式,真的会让团队的进展变慢而不是加快,我们看看应该如何设立这些数据集,让你的团队效率最大化。
我想集中讨论如何设立开发集和测试集,开发(dev)集也叫做**(development set),有时称为保留交叉验证集(hold out cross validation set)**。
然后,机器学习中的工作流程是,你尝试很多思路,用训练集训练不同的模型,然后使用开发集来评估不同的思路,然后选择一个,然后不断迭代去改善开发集的性能,直到最后你可以得到一个令你满意的成本,然后你再用测试集去评估。
现在,举个例子,你要开发一个猫分类器,然后你在这些区域里运营,美国、英国、其他欧洲国家,南美洲、印度、中国,其他亚洲国家和澳大利亚,那么你应该如何设立开发集和测试集呢?
其中一种做法是,你可以选择其中4个区域,我打算使用这四个(前四个),但也可以是随机选的区域,然后说,来自这四个区域的数据构成开发集。然后其他四个区域,我打算用这四个(后四个),也可以随机选择4个,这些数据构成测试集。
事实证明,这个想法非常糟糕,因为这个例子中,你的开发集和测试集来自不同的分布。我建议你们不要这样,而是让你的开发集和测试集来自同一分布。
<