CodeForces 367D Vasiliy's Multiset Trie树

D. Vasiliy's Multiset
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Author has gone out of the stories about Vasiliy, so here is just a formal task description.

You are given q queries and a multiset A, initially containing only integer 0. There are three types of queries:

  1. "+ x" — add integer x to multiset A.
  2. "- x" — erase one occurrence of integer x from multiset A. It's guaranteed that at least one x is present in the multiset A before this query.
  3. "? x" — you are given integer x and need to compute the value , i.e. the maximum value of bitwise exclusive OR (also know as XOR) of integer x and some integer y from the multiset A.

Multiset is a set, where equal elements are allowed.

Input

The first line of the input contains a single integer q (1 ≤ q ≤ 200 000) — the number of queries Vasiliy has to perform.

Each of the following q lines of the input contains one of three characters '+', '-' or '?' and an integer xi (1 ≤ xi ≤ 109). It's guaranteed that there is at least one query of the third type.

Note, that the integer 0 will always be present in the set A.

Output

For each query of the type '?' print one integer — the maximum value of bitwise exclusive OR (XOR) of integer xi and some integer from the multiset A.

Example
input
10
+ 8
+ 9
+ 11
+ 6
+ 1
? 3
- 8
? 3
? 8
? 11
output
11
10
14
13
Note

After first five operations multiset A contains integers 089116 and 1.

The answer for the sixth query is integer  — maximum among integers and .


题意:你有一个多重集合,一开始只有0,现在有3种操作:1.增加一个元素。2.擦除一个元素(如果有多个只擦除一个)。3给你一个x,问你集合里和他亦或以后最大是多少。

题解:把里面的元素弄成二进制,然后弄一颗Trie树,每次询问的时候从高位贪心的选择就好了。

//************************************************************************//
//*Author : Handsome How                                                 *//
//************************************************************************//
//#pragma comment(linker, "/STA    CK:1024000000,1024000000")
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <ctime>
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define foreach(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define fur(i,a,b) for(int i=(a);i<=(b);i++)
#define furr(i,a,b) for(int i=(a);i>=(b);i--)
#define cl(a) memset((a),0,sizeof(a))
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#ifdef HandsomeHow
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define dbg(x) cout << #x << " = " << x << endl
#else
#define debug(...)
#define dbg(x)
#endif
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair <int, int> pii;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const int mod=1000000007;
const double pi=acos(-1);
inline void gn(long long&x){
    int sg=1;char c;while(((c=getchar())<'0'||c>'9')&&c!='-');c=='-'?(sg=-1,x=0):(x=c-'0');
    while((c=getchar())>='0'&&c<='9')x=x*10+c-'0';x*=sg;
}
inline void gn(int&x){long long t;gn(t);x=t;}
inline void gn(unsigned long long&x){long long t;gn(t);x=t;}
ll gcd(ll a,ll b){return a? gcd(b%a,a):b;}
ll powmod(ll a,ll x,ll mod){ll t=1ll;while(x){if(x&1)t=t*a%mod;a=a*a%mod;x>>=1;}return t;}
// (づ°ω°)づe★
//-----------------------------------------------------------------
struct Node{
	int v;
	Node* son[2];
}Root,*root;


void add(int x){
	Node *p = root;
	furr(i,30,0){
		int t = (x>>i)&1;
		if(p->son[t] == NULL){
			p->son[t] = new Node;
			p = p->son[t];
			p->son[0] = p->son[1] = NULL;
			p->v = 1;
		}else{
			p = p->son[t];
			p->v++;
		}
	}
}

void era(int x){
	Node *p = root;
	furr(i,30,0){
		int t = (x>>i)&1;
		p = p->son[t];
		p->v--;
	}
}

int query(int x){
	Node *p = root;
	int v = 0;
	add(0);
	furr(i,30,0){
		int t = (x>>i)&1;
		if(p->son[!t]!=NULL && p->son[!t]->v>0){
			p = p->son[!t];
			v = v * 2 + (!t);
		}else{
			p = p->son[t];
			v = v * 2 + t;
		}
	}
	return x^v;
}

char op[10];
int x;
int main(){
#ifdef HandsomeHow
    //freopen("data.in","r",stdin);
    //freopen("data.out","w",stdout);
    time_t beginttt = clock();
#endif
	root = &Root;
	root->son[0] = root->son[1] = NULL;
	root->v = 0;
	int q;
	scanf("%d",&q);
	while(q--){
		scanf("%s %d",op,&x);
		if(op[0] == '+') add(x);
		if(op[0] == '-') era(x);
		if(op[0] == '?') printf("%d\n",query(x));	
	}
#ifdef HandsomeHow
	time_t endttt = clock();
    debug("time: %d\n",(int)(endttt - beginttt));
#endif
	return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值