POJ3660 Cow Contest (传递闭包)

本文介绍了一个竞赛场景下的算法问题,即通过一系列比赛结果确定牛的技能排名。利用邻接矩阵和Floyd算法来解决该问题,确保算法的有效性和准确性。

Cow Contest
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9308 Accepted: 5240

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

Source

题意:告诉你总共有n头牛和m组战斗力强弱的关系,并且当两头牛的战斗力关系确定以后他们的胜负一定确定,问给定这些关系以后让他们打架,有多少头牛的排名是我们可以算出来的。


弄一个邻接矩阵,一组数据相当于一条边,然后我们用floyd求一下传递闭包,最后扫一遍有几头牛能打败他的和他能打败的是全部即可。

#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <ctime>
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define foreach(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define fur(i,a,b) for(int i=(a);i<=(b);i++)
#define furr(i,a,b) for(int i=(a);i>=(b);i--)
#define cl(a) memset((a),0,sizeof(a))
#define sc(x) scanf("%d",&x)
#define dbg(x) cout << #x << " = " << x << endl
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair <int, int> pii;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const int mod=1000000007;
const double pi=acos(-1);
inline void gn(long long&x){
    int sg=1;char c;while(((c=getchar())<'0'||c>'9')&&c!='-');c=='-'?(sg=-1,x=0):(x=c-'0');
    while((c=getchar())>='0'&&c<='9')x=x*10+c-'0';x*=sg;
}
inline void gn(int&x){long long t;gn(t);x=t;}
inline void gn(unsigned long long&x){long long t;gn(t);x=t;}
int gcd(int a,int b){return a? gcd(b%a,a):b;}
ll powmod(ll a,ll x,ll mod){ll t=1ll;while(x){if(x&1)t=t*a%mod;a=a*a%mod;x>>=1;}return t;}
// (づ°ω°)づe★

const int maxn = 105;
int mp[maxn][maxn];
int n,m,ans;
void init(){
	cl(mp);
	fur(i,0,n)mp[i][i] = 1;
}

void froyd(){
	fur(k,1,n)
		fur(i,1,n)
			fur(j,1,n)
				if(mp[i][k]&&mp[k][j])
					mp[i][j] = 1;
}

void check(){
	fur(i,1,n){
		int tot = 0;
		fur(j,1,n) 
			if(mp[i][j]|mp[j][i])
				tot++;
		if(tot == n)
			ans++;
	}
}

int main(){
	//freopen("E:\\data.in","r",stdin);
	//freopen("E:\\data.out","w",stdout);
	while(scanf("%d %d",&n,&m) != EOF){
		int a,b;
		init();
		fur(i,1,m){
			gn(a);gn(b);
			mp[a][b] = 1;
		}
		froyd();
		ans = 0;
		check();
		printf("%d\n",ans);
	}	
	return 0;
}



### 解题思路 POJ 3613 Cow Relays 问题要求计算在给定的图中,从起点到终点恰好经过 $k$ 条边的最短路径。常规的暴力解法,即每次走一步更新最短路径,时间复杂度为 $O(k * n^3)$,效率较低。可利用二进制思想和矩阵快速幂的方法,将时间复杂度优化到 $O(logK * n^3)$ [^2]。 具体思路如下: 1. **图的表示**:使用邻接矩阵来表示图,矩阵中的元素 `mat[i][j]` 表示从节点 `i` 到节点 `j` 的最短距离,初始值设为无穷大 `INF`。 2. **矩阵乘法的定义**:普通矩阵乘法是对应元素相乘再相加,而这里定义的矩阵乘法是对应元素相加再取最小值。即 `C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j])`,表示从节点 `i` 经过节点 `k` 到节点 `j` 的最短距离。 3. **矩阵快速幂**:通过不断地将矩阵自乘,利用二进制的思想,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **节点编号映射**:由于节点编号可能不连续,使用一个数组 `f` 来将原始节点编号映射到连续的编号,方便矩阵操作。 ### 代码实现 以下是实现该算法的 C++ 代码: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; #define INF ((1<<30)-1) int n; struct matrix { int mat[201][201]; matrix() { for(int i = 0; i < 201; i++) for(int j = 0; j < 201; j++) mat[i][j] = INF; } }; int f[2001]; matrix mul(matrix A, matrix B) { matrix C; int i, j, k; for(i = 1; i <= n; i++) { for(j = 1; j <= n; j++) { for(k = 1; k <= n; k++) { C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j]); } } } return C; } matrix powmul(matrix A, int k) { matrix B; for(int i = 1; i <= n; i++) B.mat[i][i] = 0; while(k) { if(k & 1) B = mul(B, A); A = mul(A, A); k >>= 1; } return B; } int main() { matrix A; int k, t, s, e, a, b, c; scanf("%d%d%d%d", &k, &t, &s, &e); int num = 1; while(t--) { scanf("%d%d%d", &c, &a, &b); if(f[a] == 0) f[a] = num++; if(f[b] == 0) f[b] = num++; A.mat[f[a]][f[b]] = A.mat[f[b]][f[a]] = c; } n = num - 1; A = powmul(A, k); cout << A.mat[f[s]][f[e]] << endl; return 0; } ``` ### 代码解释 1. **结构体 `matrix`**:定义了一个矩阵结构体,用于存储图的邻接矩阵,构造函数将矩阵元素初始化为无穷大。 2. **函数 `mul`**:实现了自定义的矩阵乘法,计算两个矩阵相乘的结果。 3. **函数 `powmul`**:实现了矩阵快速幂,通过不断地将矩阵自乘,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **主函数 `main`**:读取输入数据,将节点编号映射到连续的编号,初始化邻接矩阵,调用 `powmul` 函数计算经过 $k$ 条边的最短路径矩阵,最后输出从起点到终点的最短距离。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值