Canvas中的乘号在哪里?

372 篇文章 ¥29.90 ¥99.00
HTML5 Canvas是一个用于在网页上绘制图形的API,但不直接提供乘号的绘制功能。要画乘号,需利用基本图形元素和路径操作。文中提供了一个示例代码,展示如何通过JavaScript在Canvas上创建乘号,包括设置样式、定义路径并绘制。你可以自定义乘号的位置、大小和样式。对于复杂图形,可能需要借助矢量图形软件并导入到Canvas中。

Canvas是HTML5中的一个强大的绘图API,用于在网页上绘制图形、动画和其他可视化效果。在Canvas中,我们可以使用JavaScript编写代码来绘制各种形状和图像。然而,Canvas本身并没有提供乘号的绘制功能,因为它仅仅是一个绘图工具,主要用于绘制基本的图形元素,如线条、矩形、圆形等。

如果你想在Canvas中绘制乘号,你可以使用基本的图形元素和路径操作来创建它。下面是一个示例代码,展示了如何在Canvas上绘制一个简单的乘号:

// 获取Canvas元素
var canvas = document.getElementById("myCanvas");
var ctx = canvas.
import cv2 import numpy as np import tkinter as tk import matplotlib matplotlib.use('TkAgg') from tkinter import ttk, filedialog, messagebox import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg plt.rcParams['font.sans-serif']=['SimHei'] class MachineVisionApp: def __init__(self, root): self.root = root self.root.title("机械零件视觉检测系统") self.root.geometry("1200×800") # 初始化变量 self.original_image=None self.processed_image = None self.filename = None self.setup_ui() def setup_ui(self): """设置用户界面""" # 主框架 main_frame = ttk.Frame(self.root) main_frame.pack(fill=tk.BOTH, expand=True, padx=10,pady=10) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="处理控制",width=300) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) control_frame.pack_propagate(False) display_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=Trve, padx=5, pady=5) file_frame = ttk.LabelFrane(control_frame, text="文件操作") file_frame.pack(fill=tk.X, padx=5, pady=5) # 文件操作区域 file_frame = ttk.LabelFrame(control_frame, text="文件操作") file_frame.pack(fill=tk.X, padx=5,pady = 5) ttk.Button(file_frame, text="打开图像",command = self.open_image).pack(fill=tk.x, pady=2) ttk.Button(file_frame, text="保存结果",comnand = self.save_image).pack(fill=tk.X, pady=2) ttk, Button(file_frame, text="重置图像",conmmand = self.reset_image).pack(fill=tk.X, pady=2) # 图像增强 enhance_frame = ttk.LabelFrame(control_frame,text = "图像增强") enhance_frame.pack(fill=tk.X, padx=5, pady=5) ttk.Button(enhance_frame, text = "直方图均衡化", command = self.histogram_egualization).pack(fill=tk.X,pady=2) ttk.Button(enhance_frame,text = "对比度增强",command = self.contrast_enhancement).pack(fill=tk.X,pady=2) ttk.Button(enhance_frame, text = "伽马校正",command = self.gamma_correction).pack(fill=tk.X,pady = 2) # 图像滤波 filter_frame = ttk.LabelFrame(control_frame,text = "图像滤波") filter_frame.pack(fill=tk.X, padx=5, pady=5) ttk.Button(filter_frame,text = "高斯滤波", command = self.gaussian_blur).pack(fill=tk.X, pady = 2) ttk.Button(filter_frame, text = "中值滤波", command = self.median_blur).pack(fill=tk.X, pady = 2) # 边缘检测 edge_frame = ttk.LabelFrame(control_frame, text = "边缘检测") edge_frame.pack(fill=tk.X,padx = 5,pady = 5) ttk.Button(edge_frame, text="Sobel算子", command=self.sobel_edge).pack(fill=tk.X, pady=2) ttk.Button(edge_frame, text="Laplacian算子", command=self.laplacian_edge).pack(fill=tk.X, pady=2) #形态学处理 morph_frame = ttk.LabeLFrame(control_frame, text="形态学处理") morph_frame.pack(fill=tk.X,padx=5,pady=5) ttk.Button(morph_frame,text="腐蚀操作",command=self.erosion).pack(fill=tk.X, pady=2) ttk.Button(morph_frame,text="膨胀操作",command=self.dilation).pack(fill=tk.X, pady=2) ttk.Button(morph_frame,text="开运算", command=self.opening).pack(fill=tk.X, pady=2) ttk.Button(morph_frame,text="闭运算", command=self.closing).pack(fill=tk.X, pady=2) #几何变换 geom_frame = ttk.LabelFrame(control_frame, text="几何变换") geom_frame.pack(fill=tk.X, padx=5, pady=5) ttk.Button(geom_frame,text="旋转90°",command=self.rotate_90).pack(fill=tk.X,pady=2) ttk.Button(geom_frame, text="水平翻转", command=self.flip_horizontal).pack(fill=tk.X, pady=2) ttk.Button(geom_frame, text="垂直翻转", command=self.flip_vertical).pack(fill=tk.X, pady=2) # 图像显示区域 self.canvas_frame = ttk.Frame(display_frame) self.canvas_frame.pack(fill=tk.BoTH,expand=True) #创建matplotlib图形 self.fig, (self.axl, self.ax2) =plt.subplots(nrows=1,ncols=2,figsize=(10,5)) self.axl.set_title("原始图像") self.ax2.set_title("处理结果") self.canvas = FigureCanvasTkAgg(self.fig,master=self.canvas_frame) self.canvas.draw() self.canvas.get_tk_widget().pack(fill=tk.BoTH,expand=True) def open_image(self): """打开图像文件""" filename = filedialog.askopenfilename( filetypes=[("图像文件","*.jpg *.jpeg *.png *.bmp *.tiff")] ) if filename: self.filename = filename self.original_image = cv2.imread(filename) if self.original_image is not None: self.processed_image = self.original_image.copy() self.display_images() else: messagebox.showerror( "错误", "无法打开图像文件") def save_image(self): """"保存处理后的图像""" if self.processed_image is not None: filename = filedialog.asksaveasfilename( filetypes=[("PNG文件","*.png"),("JPEG文件","*.jpg"),("所有文件","*.*")] ) if filename: cv2.imwrite(filename, self.processed_image) messagebox.showinfo("成功","图像已保存") else: messagebox.showwarning("警告", "没有图像可保存") def resetimage(self): """重置图像""" if self.originalimage is not None: self.processed_image = self.origlnal_image.copy() self.display_images() def display_images(self): """显示原始图像和处理后的图像""" if self.original_image is not None and self.processed_image is not None: # 清除之前的图像 self.axl.clear() self.ax2.clear() #转换BGR到RGB用于显示 original_rgb = cv2.cvtColor(self.original_image, cv2.C0L0R_BGR2RGB) processed_rgb = cv2.cvtColor(self.processed_image, cv2.C0L0R_BGR2RGB) #显示图像 self.axl.imshow(original_rgb) self.axl.settitle("原始图像") self.axl.axis('off') self.ax2.imshow(processed_rgb) self.ax2.set_title("处理结果") self.ax2.axis('off') self.canvas.draw() #图像增强方法 def histogram_egualization(self): """直方图均衡化""" if self.processed_image is not None: #转换为YUV色彩空间 img_yuv = cv2.cvtcolor(self.processed_image, cv2.c0L0R_BGR2YUV) #对通道进行直方图均衡化 img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:, :, 0]) #转换回BGR self.processed_image = cv2.cvtColor(img_yuv, cv2.c0L0R_YUV2BGR) self.display_images() def contrast_enhancement(self): """对比度增强""" if self.processedimageisnotNone: # 使用CLAHE(限制对比度自适应直方图均衡化) lab = cv2.cvtColor(self.processed_image, cv2.C0L0R_BGR2LAB) labplanes=list(cv2.split(lab)) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) lab_planes[o] = clahe.apply(lab_planes[0]) lab = cv2.merge(lab_planes) self.processedimage=cv2.cvtColor(lab.cv2.C0L0RLAB2BGR) self.display_images() def gamma_correction(self): """伽马校正""" if self.processed_image is not None: gamma = 1.5 inv_gamma = 1.0 / gamma table = np.array([((i / 255.0) ** inv_gamma) * 255 for i in np.arange(0, 256)]).astype("uint8") self.processed_image = cv2.LuT(self.processed_image, table) self.display_images() # 图像滤波方法 def gaussian_blur(self): """高斯滤波""" if self.processed_image is not None: self.processed_image = cv2.GaussianBlur(self.processed_image, (5, 5), 0) self.display_images() def median_blur(self): """中值滤波""" if self.processed_image is not None: self.processed_image = cv2.medianBlur(self.processed_image,5) self.display_images() def bilateral_filter(self): """双边滤波""" if self.processed_image is not None: self.processed_image = cv2.bilateralFilter(self.processed_image, 9, 75, 75) self.display_images() #边缘检测方法 def canny_edge(self): """Canny边缘检测""" if self.processed_image is not None: gray= cv2.cvtColor(self.processed_image, cv2.C0L0R_GRAY2BGR) #使用固定國值 edges = cv2.Canny(gray, 100, 200) # 将边缘图像转换为彩色显示 self.processed_image = cv2.cvtColor(edges, cv2.C0L0R_GRAY2BGR) self.display_images() def sobel_edge(self): """Sobe边缘检测""" if self.processedimageisnotNone: gray = cv2.cvtColor(self.processed_image, cv2.C0L0R_BGR2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) sobel = cv2.maqnitude(sobelx, sobely) sobel = np.uint8(sobel) self.processed_image = cv2.cvtColor(sobel, cv2.C0L0R_GRAY2BGR) self.display_images() def laplacian_edge(self): """LapLacian边缘检测""" if self.processed_image is not None: gray = cv2.cvtColor(self.processed_image, cv2.C0L0R_BGR2GRAY) laplacian = cv2.Laplacian(gray, cv2.CV_64F) laplacian = np.uint8(np.absolute(laplacian)) self.processed_1mage=cv2.cvtColor(laplaclan,cv2.C0L0R_GRAY2BGR) self.display_images() # 形态学处理方法 def erosion(self): """腐蚀操作""" if self.processed_image is not None: kernel = np.ones( shape,(5,5) , np.uint8) self.processed_image = cv2.erode(self.processed_image, kernel, iterations=1) self.display_images() def dilation(self): """膨胀操作""" if self.processed_image is not None: kernel = np.ones( shape,(5, 5), np.uint8) self.processed_image = cv2.dilate(self.processed_image,kernel, iterations=1) self.display_images() def opening(self): """开运算""" if self.processed_image is not None: kernel = np.ones( shape,(5, 5), np.uint8) self.processed_image = cv2.morphologyEx(self.processed_image,cv2.MoRPH_oPEN,kernel) self.display_images() def closing(self): """闭运算""" if self.processed_image is not None: kernel = np.ones( shape,(5, 5), np.uint8) self.processed_image = cv2.morphologyEx(self.processed_image,cv2.MoRPH_cLoSE, kernel) self.display_images() #几何变换方法 def rotate_90(self): """旋转90度""" if self.processed_image is not None: self.processed_image = cv2.rotate(self.processed_image, cv2.R0TATE_90_CL0cKwISE) self.display_images() def fliphorizontal(self): """水平翻转""" if self.processed_imageisnotNone: self.processed_image = cv2.flip(self.processed_image, 1) self.display_images() def flip_vertical(self): """垂直翻转""" if self.processed_image is not None: self.processed_image = cv2.flip(self.processed_image, 0) self.display_images() def main(): root=tk.Tk() app = MachineVisionApp(root) root.malnloop() if __name__ == "__main__": main()
11-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值