CSU 2151 集训难度(线段树)

本文深入探讨线段树数据结构的实现与应用,通过一个具体案例,详细讲解了线段树的构建、修改和查询操作。作者分享了在解决实际问题过程中遇到的常见错误及避免方法,强调了在判断标记时使用无穷大值的重要性。

其实是个超傻逼的题目,但是交了20几发,就死在一个写惯了的小错误上

这种题目一看建两个标记就好了,

  • tag1tag1tag1:表示区间加标记
  • tag2tag2tag2:表示区间覆盖标记

那么下传方式很显然:

  • 先下传 tag2tag2tag2,更新 tag2tag2tag2vvvtag1tag1tag1
  • 然后下传 tag1tag1tag1,更新 vvvtag1tag1tag1

就没了

然后我烦了一个很智障的错误:

我以为当 tag=0tag=0tag=0 时就是没有标记,

然后看一眼题目:∣v∣&lt;=105|v|&lt;=10^5v<=105,一脸懵逼去了

以后写线段树判断都要是 infinfinf 才行

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
#define int long long
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define ub upper_bound
#define lb lower_bound
#define pq priority_queue
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 100010 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }

int n, m, lst ;

struct SegTree {
	int l, r, sz, v, tag1, tag2 ; // 一个求和标记,一个赋值标记
	#define ls(x) x << 1
	#define rs(x) x << 1 | 1
	#define l(x) tr[x].l
	#define r(x) tr[x].r
	#define sz(x) tr[x].sz
	#define v(x) tr[x].v
	#define tag1(x) tr[x].tag1
	#define tag2(x) tr[x].tag2
} tr[N << 2] ;

void pushup(int x) {
	v(x) = v(ls(x)) + v(rs(x)) ;
}

void pushdown(int x) {
	if (tag2(x) != iinf) {
		tag1(ls(x)) = tag1(rs(x)) = iinf ; // 清空?
		tag2(ls(x)) = tag2(rs(x)) = tag2(x) ;
		v(ls(x)) = sz(ls(x)) * tag2(x) ;
		v(rs(x)) = sz(rs(x)) * tag2(x) ;
		tag2(x) = iinf ;
	}
	if (tag1(x) != iinf) {
		tag1(ls(x)) = (tag1(ls(x)) == iinf ? 0 : tag1(ls(x))) + tag1(x) ;
		tag1(rs(x)) = (tag1(rs(x)) == iinf ? 0 : tag1(rs(x))) + tag1(x) ;
		v(ls(x)) += sz(ls(x)) * tag1(x) ;
		v(rs(x)) += sz(rs(x)) * tag1(x) ;
		tag1(x) = iinf ;
	}
}

void build(int x, int l, int r) {
	l(x) = l, r(x) = r ;
	sz(x) = r(x) - l(x) + 1 ;
	tag1(x) = tag2(x) = iinf ;
	if (l == r) {
		v(x) = lst ;
		return ;
	}
	int mid = (l + r) >> 1 ;
	build(ls(x), l, mid) ;
	build(rs(x), mid + 1, r) ;
	pushup(x) ;
}

void modify(int x, int l, int r, int c) {
	if (l <= l(x) && r(x) <= r) {
		tag1(x) = (tag1(x) == iinf ? 0 : tag1(x)) + c ;
		v(x) += sz(x) * c ;
		return ;
	}
	pushdown(x) ;
	int mid = (l(x) + r(x)) >> 1 ;
	if (l <= mid) modify(ls(x), l, r, c) ;
	if (mid < r) modify(rs(x), l, r, c) ;
	pushup(x) ;
}

void cover(int x, int l, int r, int c) {
	if (l <= l(x) && r(x) <= r) {
		tag1(x) = iinf ; tag2(x) = c ;
		v(x) = c * sz(x) ;
		return ;
	}
	pushdown(x) ;
	int mid = (l(x) + r(x)) >> 1 ;
	if (l <= mid) cover(ls(x), l, r, c) ;
	if (mid < r) cover(rs(x), l, r, c) ;
	pushup(x) ;
}

int query(int x, int l, int r) {
	if (l <= l(x) && r(x) <= r) return v(x) ;
	pushdown(x) ;
	int mid = (l(x) + r(x)) >> 1, ans = 0 ;
	if (l <= mid) ans += query(ls(x), l, r) ;
	if (mid < r) ans += query(rs(x), l, r) ;
	pushup(x) ;
	return ans ;
}


signed main(){
	scanf("%lld%lld%lld", &n, &m, &lst) ;
	build(1, 1, n) ;
	while (m--) {
		int op, x, y, v ; scanf("%lld%lld%lld", &op, &x, &y) ;
		if (op == 0) {
			scanf("%lld", &v) ;
			modify(1, x, y, v) ;
		}
		else if (op == 1) {
			scanf("%lld", &v) ;
			cover(1, x, y, v) ;
		} else {
			printf("%lld\n", query(1, x, y)) ;
		}
	}
	return 0 ;
}

/*
写代码时请注意:
	1.ll?数组大小,边界?数据范围?
	2.精度?
	3.特判?
	4.至少做一些
思考提醒:
	1.最大值最小->二分?
	2.可以贪心么?不行dp可以么
	3.可以优化么
	4.维护区间用什么数据结构?
	5.统计方案是用dp?模了么?
	6.逆向思维?
*/


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值