mask rcnn 测试指定图片

这篇博客介绍了如何修改Mask R-CNN的demo.py文件,以指定并测试个人选择的图片。通过代码示例,作者展示了具体的修改步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇演示如何修改demo.py,来指定自己想要测试的图片,直接贴代码

# coding: utf-8
 
 
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
 
# Root directory of the project
ROOT_DIR = os.path.abspath("../")
 
# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
import coco
 
 
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
 
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)
 
# Directory of images to run detection on
IMAGE_DIR = os.path.join(RO
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值