volatile的详细用法

本文详细解析了C语言中volatile关键字的用途及其背后的工作原理。重点介绍了volatile如何帮助处理那些可能被外部因素修改的变量,特别是在多线程环境、中断服务程序及硬件寄存器访问中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个定义为volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。精确地说就是,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。下面是volatile变量的几个例子: 
    1). 并行设备的硬件寄存器(如:状态寄存器) 
    2). 一个中断服务子程序中会访问到的非自动变量(Non-automatic variables) 
    3). 多线程应用中被几个任务共享的变量 
    回答不出这个问题的人是不会被雇佣的。我认为这是区分C程序员和嵌入式系统程序员的最基本的问题。嵌入式系统程序员经常同硬件、中断、RTOS等等打交道,所用这些都要求volatile变量。不懂得volatile内容将会带来灾难。 
    假设被面试者正确地回答了这是问题(嗯,怀疑这否会是这样),我将稍微深究一下,看一下这家伙是不是直正懂得volatile完全的重要性。 
    1). 一个参数既可以是const还可以是volatile吗?解释为什么。 
    2). 一个指针可以是volatile 吗?解释为什么。 
    3). 下面的函数有什么错误: 
         int square(volatile int *ptr) 
         { 
              return *ptr * *ptr; 
         } 
    下面是答案: 
    1). 是的。一个例子是只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。 
    2). 是的。尽管这并不很常见。一个例子是当一个中服务子程序修该一个指向一个buffer的指针时。 
    3). 这段代码的有个恶作剧。这段代码的目的是用来返指针*ptr指向值的平方,但是,由于*ptr指向一个volatile型参数,编译器将产生类似下面的代码: 
    int square(volatile int *ptr)  
    { 
         int a,b; 
         a = *ptr; 
         b = *ptr; 
         return a * b; 
     } 
    由于*ptr的值可能被意想不到地该变,因此a和b可能是不同的。结果,这段代码可能返不是你所期望的平方值!正确的代码如下: 
     long square(volatile int *ptr)  
     { 
            int a; 
            a = *ptr; 
            return a * a; 
     } 
讲讲我的理解: (欢迎打板子...~~!) 

关键在于两个地方:      
  
1. 编译器的优化  (请高手帮我看看下面的理解) 

在本次线程内, 当读取一个变量时,为提高存取速度,编译器优化时有时会先把变量读取到一个寄存器中;以后,再取变量值时,就直接从寄存器中取值; 

当变量值在本线程里改变时,会同时把变量的新值copy到该寄存器中,以便保持一致 

当变量在因别的线程等而改变了值,该寄存器的值不会相应改变,从而造成应用程序读取的值和实际的变量值不一致 

当该寄存器在因别的线程等而改变了值,原变量的值不会改变,从而造成应用程序读取的值和实际的变量值不一致  


举一个不太准确的例子:  

发薪资时,会计每次都把员工叫来登记他们的银行卡号;一次会计为了省事,没有即时登记,用了以前登记的银行卡号;刚好一个员工的银行卡丢了,已挂失该银行卡号;从而造成该员工领不到工资  

员工 -- 原始变量地址  
银行卡号 -- 原始变量在寄存器的备份  


2. 在什么情况下会出现(如1楼所说) 

    1). 并行设备的硬件寄存器(如:状态寄存器)  
    2). 一个中断服务子程序中会访问到的非自动变量(Non-automatic variables)  
    3). 多线程应用中被几个任务共享的变量  
     

补充: volatile应该解释为“直接存取原始内存地址”比较合适,“易变的”这种解释简直有点误导人;  

“易变”是因为外在因素引起的,象多线程,中断等,并不是因为用volatile修饰了的变量就是“易变”了,假如没有外因,即使用volatile定义,它也不会变化; 

而用volatile定义之后,其实这个变量就不会因外因而变化了,可以放心使用了; 大家看看前面那种解释(易变的)是不是在误导人 


------------简明示例如下:------------------ 

volatile关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素更改,比如:操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码就不再进行优化,从而可以提供对特殊地址的稳定访问。 
使用该关键字的例子如下: 
int volatile nVint; 
>>>>当要求使用volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。而且读取的数据立刻被保存。 
例如: 
volatile int i=10; 
int a = i; 
... 
//其他代码,并未明确告诉编译器,对i进行过操作 
int b = i; 
>>>>volatile 指出 i是随时可能发生变化的,每次使用它的时候必须从i的地址中读取,因而编译器生成的汇编代码会重新从i的地址读取数据放在b中。而优化做法是,由于编译器发现两次从i读数据的代码之间的代码没有对i进行过操作,它会自动把上次读的数据放在b中。而不是重新从i里面读。这样以来,如果i是一个寄存器变量或者表示一个端口数据就容易出错,所以说volatile可以保证对特殊地址的稳定访问。 
>>>>注意,在vc6中,一般调试模式没有进行代码优化,所以这个关键字的作用看不出来。下面通过插入汇编代码,测试有无volatile关键字,对程序最终代码的影响: 
>>>>首先,用classwizard建一个win32 console工程,插入一个voltest.cpp文件,输入下面的代码: 
>> 
#i nclude <stdio.h> 
void main() 

int i=10; 
int a = i; 
printf("i= %d",a); 
//下面汇编语句的作用就是改变内存中i的值,但是又不让编译器知道 
__asm { 
mov dword ptr [ebp-4], 20h 

int b = i; 
printf("i= %d",b); 
}       
然后,在调试版本模式运行程序,输出结果如下: 
i = 10 
i = 32 
然后,在release版本模式运行程序,输出结果如下: 
i = 10 
i = 10 
输出的结果明显表明,release模式下,编译器对代码进行了优化,第二次没有输出正确的i值。下面,我们把 i的声明加上volatile关键字,看看有什么变化: 
#i nclude <stdio.h> 
void main() 

volatile int i=10; 
int a = i; 
printf("i= %d",a); 
__asm { 
mov dword ptr [ebp-4], 20h 

int b = i; 
printf("i= %d",b); 
}       
分别在调试版本和release版本运行程序,输出都是: 
i = 10 
i = 32 
这说明这个关键字发挥了它的作用! 

------------------------------------ 


volatile对应的变量可能在你的程序本身不知道的情况下发生改变 
比如多线程的程序,共同访问的内存当中,多个程序都可以操纵这个变量 
你自己的程序,是无法判定合适这个变量会发生变化 
还比如,他和一个外部设备的某个状态对应,当外部设备发生操作的时候,通过驱动程序和中断事件,系统改变了这个变量的数值,而你的程序并不知道。 
对于volatile类型的变量,系统每次用到他的时候都是直接从对应的内存当中提取,而不会利用cache当中的原有数值,以适应它的未知何时会发生的变化,系统对这种变量的处理不会做优化——显然也是因为它的数值随时都可能变化的情况。 

-------------------------------------------------------------------------------- 

典型的例子 
for ( int i=0; i<100000; i++); 
这个语句用来测试空循环的速度的 
但是编译器肯定要把它优化掉,根本就不执行 
如果你写成  
for ( volatile int i=0; i<100000; i++); 
它就会执行了 

volatile的本意是“易变的”  
由于访问寄存器的速度要快过RAM,所以编译器一般都会作减少存取外部RAM的优化。比如: 

static int i=0; 

int main(void) 

... 
while (1) 

if (i) dosomething(); 



/* Interrupt service routine. */ 
void ISR_2(void) 

i=1; 


程序的本意是希望ISR_2中断产生时,在main当中调用dosomething函数,但是,由于编译器判断在main函数里面没有修改过i,因此 
可能只执行一次对从i到某寄存器的读操作,然后每次if判断都只使用这个寄存器里面的“i副本”,导致dosomething永远也不会被 
调用。如果将将变量加上volatile修饰,则编译器保证对此变量的读写操作都不会被优化(肯定执行)。此例中i也应该如此说明。 

一般说来,volatile用在如下的几个地方: 

1、中断服务程序中修改的供其它程序检测的变量需要加volatile; 

2、多任务环境下各任务间共享的标志应该加volatile; 

3、存储器映射的硬件寄存器通常也要加volatile说明,因为每次对它的读写都可能由不同意义; 

另外,以上这几种情况经常还要同时考虑数据的完整性(相互关联的几个标志读了一半被打断了重写),在1中可以通过关中断来实 
现,2中可以禁止任务调度,3中则只能依靠硬件的良好设计了。 
### volatile 关键字的使用方法和场景 #### 使用方法 `volatile` 是一种特殊的修饰符,主要用于多线程环境下的变量声明。它的主要作用是告诉编译器该变量可能会被其他线程异步修改,因此每次访问这个变量时都必须从内存中重新读取,而不是依赖于寄存器或其他缓存中的副本[^1]。 以下是 `volatile` 的基本语法: ```java volatile int counter; ``` 在此定义下,任何对 `counter` 的读写操作都会直接与主内存交互,从而确保不同线程之间的可见性和一致性。 #### 主要功能 1. **禁止指令重排序** 在多核处理器环境中,为了提高性能,编译器或 CPU 可能会对代码进行优化并调整执行顺序。然而这种行为可能导致不可预期的结果。通过标记为 `volatile`,可以强制规定某些特定的操作序列不能被打乱。具体而言, - 所有的前序操作会在对该变量的访问之前完成; - 后续的所有操作则需等待当前访问结束后才能继续[^1]^。 2. **保证可见性** 如果某个线程更新了一个 `volatile` 类型的数据项,则此改动会立即反映给所有观察者(即其它线程),即使它们之间不存在同步关系也无妨[^3]^。 #### 应用场景 - **状态标志位** 假设存在这样一个需求——主线程需要知道子线程是否已经结束运行。此时可以通过设置一个布尔类型的全局变量作为信号灯,并将其声明成 `volatile` 来实现跨线程通信的目的。例如: ```java public class Worker implements Runnable { private volatile boolean running = true; @Override public void run() { while (running){ System.out.println("Running..."); try { Thread.sleep(100); } catch(Exception e){} } } public void shutdown(){ this.running=false; } } ``` - **单次初始化资源** 对象创建完成后仅允许第一次成功调用的方法适合采用双重校验锁定模式(Double Checked Locking Pattern),其中涉及的关键字段应设定为 `volatile` ,以避免因部分构造而导致的对象暴露问题[^5]^。 注意:尽管如此,仍有一些限制条件使得我们不能完全依靠 `volatile` 替代更复杂的同步机制比如 `synchronized` 或显式的锁对象(lock object)[^2]^。 --- ### 示例代码展示 下面给出了一段利用 Java 中 `volatile` 实现简单计数器的例子: ```java public class VolatileExample { private static volatile int count = 0; public static void main(String[] args) throws InterruptedException{ new IncrementTask().start(); new DecrementTask().start(); TimeUnit.SECONDS.sleep(5); System.out.printf("Final Count Value:%d%n",count); } } class IncrementTask extends Thread{ @Override public void run(){ for(int i=0;i<1_000_000;i++) VolatileExample.count++; } } class DecrementTask extends Thread{ @Override public void run(){ for(int i=0;i<999_999;i++) VolatileExample.count--; } } ``` 虽然这里尝试模拟高并发情况下来验证 `volatile` 是否能够解决竞态条件(race condition),但由于加减运算本身并非原子操作,最终结果可能仍然不准确. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值