POJ1236——Network of Schools

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

IOI 1996

第一个问题是问最少要几个点,才能使软件到达其他学校
第二个问题是问最少加多少条边,使得图变成强连通图,

对图求好强连通分量后,缩点,把每个强连通分量看成1个点,判断有多少个入度为0的,就是第一个问题的答案,判断有多少个出度为0的,然后在两者中去大者,就是第二个问题的答案。具体证明请参考kuangbin大神的博客: 点击打开链接

#include<stdio.h>
#include<string.h>

const int maxn=100050;
int DFN[maxn];//记录每个点被访问到的时间
int low[maxn];//记录点可以直接或间接到达的最早被访问到的点(也就是那个强连通分量的
int stack[maxn];
int sccnum[maxn];//标记每个点属于第几个强连通分量
int in[maxn],out[maxn];//出度和入度
bool instack[maxn];
int num[maxn];
int sccNum;//强连通分量的数目
int top;
int index;
int n;
struct node
{
    int to;
    int next;
}edge[maxn];
int head[maxn];
int tot;

int max(int a,int b)
{
	return a>b?a:b;
}

void addedge(int from,int to)
{
    edge[tot].to=to;
    edge[tot].next=head[from];
    head[from]=tot++;
}

void tarjan(int i)
{
    DFN[i]=low[i]=++index;//刚刚搜到这个点,DFN和low都赋值为被访问到的时间
    stack[top++]=i;//入栈
    instack[i]=1;
    for (int j=head[i];j!=-1;j=edge[j].next)
    {
        if (!DFN[edge[j].to])//如果没有被访问过
        {
            tarjan(edge[j].to);
            //这个时候low可能要修改,值为i或者i的子树可以到达的最早被访问到的点的时
            if (low[i]>low[edge[j].to])
                low[i]=low[edge[j].to];
        }
        else if (instack[edge[j].to])//已经在栈
        {
            if (low[i]>DFN[edge[j].to])
                low[i]=DFN[edge[j].to];
        }
    }
    if (DFN[i]==low[i])//找到根
    {
    	sccNum++;
    	int v;
        do
        {
            v=stack[--top];
            sccnum[v]=sccNum;
            num[sccNum]++;
            instack[v]=0;//标记出栈
        }while(v!=i);
    }
}

void solve()
{
    memset(DFN,0,sizeof(DFN));
    memset(instack,0,sizeof(instack));
    memset(num,0,sizeof(num));
    index=0;
    sccNum=0;
    top=0;
    for (int i=1;i<=n;i++)
        if (!DFN[i])
            tarjan(i);
}

int main()
{
    while(~scanf("%d",&n))
    {
    	memset(head,-1,sizeof(head));
    	tot=0;
    	for(int i=1;i<=n;i++)
    	{
    		int t;
	    	while(scanf("%d",&t) && t)
	    	{
	    		addedge(i,t);
	    	}
	    }
	    solve();
	    if(sccNum==1)
	      printf("1\n0\n");
        else
        {
        	memset(in,0,sizeof(in));
        	memset(out,0,sizeof(out));
        	for(int i=1;i<=n;i++)
        	  for(int j=head[i];j!=-1;j=edge[j].next)
        	  {
        	  		if(sccnum[i]!=sccnum[edge[j].to])
        	  		{
		  	        	in[sccnum[edge[j].to]]++;
		  	        	out[sccnum[i]]++;
		  	        }
  	          }
            int a=0,b=0;
            for(int i=1;i<=sccNum;i++)
            {
            	if(in[i]==0)
            	  a++;
          	    if(out[i]==0)
          	      b++;
            }
            printf("%d\n",a);
            printf("%d\n",max(a,b));
        }
    }
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 华为移动服务(Huawei Mobile Services,简称 HMS)是一个全面开放的移动服务生态系统,为企业和开发者提供了丰富的工具和 API,助力他们构建、运营和推广应用。其中,HMS Scankit 是华为推出的一款扫描服务 SDK,支持快速集成到安卓应用中,能够提供高效且稳定的二维码和条形码扫描功能,适用于商品扫码、支付验证、信息获取等多种场景。 集成 HMS Scankit SDK 主要包括以下步骤:首先,在项目的 build.gradle 文件中添加 HMS Core 库和 Scankit 依赖;其次,在 AndroidManifest.xml 文件中添加相机访问和互联网访问权限;然后,在应用程序的 onCreate 方法中调用 HmsClient 进行初始化;接着,可以选择自定义扫描界面或使用 Scankit 提供的默认扫描界面;最后,实现 ScanCallback 接口以处理扫描成功和失败的回调。 HMS Scankit 内部集成了开源的 Zxing(Zebra Crossing)库,这是一个功能强大的条码和二维码处理库,提供了解码、生成、解析等多种功能,既可以单独使用,也可以与其他扫描框架结合使用。在 HMS Scankit 中,Zxing 经过优化,以更好地适应华为设备,从而提升扫描性能。 通常,ScanKitDemoGuide 包含了集成 HMS Scankit 的示例代码,涵盖扫描界面的布局、扫描操作的启动和停止以及扫描结果的处理等内容。开发者可以参考这些代码,快速掌握在自己的应用中实现扫码功能的方法。例如,启动扫描的方法如下: 处理扫描结果的回调如下: HMS Scankit 支持所有安卓手机,但在华为设备上能够提供最佳性能和体验,因为它针对华为硬件进行了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值