Description
Recently kiki has nothing to do. While she is bored, an idea appears in his mind, she just playes the checkerboard game.The size of the chesserboard is n*m.First of all, a coin is placed in the top right corner(1,m). Each time one people can move the coin into the left, the underneath or the left-underneath blank space.The person who can't make a move will lose the game. kiki plays it with ZZ.The game always starts with kiki. If both play perfectly, who will win the game?
Input
Input contains multiple test cases. Each line contains two integer n, m (0<n,m<=2000). The input is terminated when n=0 and m=0.
Output
If kiki wins the game printf "Wonderful!", else "What a pity!".
Sample Input
5 3
5 4
6 6
0 0
Sample Output
What a pity!
Wonderful!
Wonderful!
所谓的NP就是玩家每次走都有两种可能必胜和必败 P->败,N->胜(是指下一个人的状态)。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int main()
{
int n,m,i,j;
ios::sync_with_stdio(false);
while(cin>>n>>m&&n&&m)
{
if(n%2!=0&&m%2!=0)
puts("What a pity!");
else
printf("Wonderful!\n");
}
return 0;
}
然后根据经过一步操作可到达必败状态的都是必胜状态,下一步操作都是必胜状态,那么这步操作时必败状态的原则一步步的去画表格就可以了。
| P |
由于1,6和2,7位置只能向1,7位置移动,所以1,6与2,7为N。
| N | ||||||
| P | N |
同理,第1列和第7行就可以填充完毕。
| P | ||||||
| N | ||||||
| P | ||||||
| N | ||||||
| P | ||||||
| N | ||||||
| P | N | P | N | P | N | P |
| P | ||||||
| N | ||||||
| P | ||||||
| N | ||||||
| P | ||||||
| N | N | |||||
| P | N | P | N | P | N | P |
| P | N | P | N | P | N | P |
| N | N | N | N | N | N | N |
| P | N | P | N | P | N | P |
| N | N | N | N | N | N | N |
| P | N | P | N | P | N | P |
| N | N | N | N | N | N | N |
| P | N | P | N | P | N | P |
此图填完,可以找到规律:
只有在行列数均为奇数时,为P,其他情况均为N。
本文探讨了一种基于游戏棋盘的胜负策略分析方法。通过分析棋盘游戏的不同状态(N状态与P状态),确定了游戏双方在完美策略下的胜负结果。文章提供了具体的算法实现,并总结出当棋盘行列数均为奇数时为必败状态,其余情况均为必胜状态的规律。

被折叠的 条评论
为什么被折叠?



