
方法1: top-down recursion。这是最简单直白的。对于当前节点,我们检查他的左右子树是不是平衡二叉树,并且检查他左右子树高度差是不是小于等于1。时间复杂avergae case nlogn worst case n^2,空间复杂n。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) return true;
if(root.left == null && root.right == null) return true;
TreeNode left = root.left;
TreeNode right = root.right;
int heightLeft = heightOfTree(left);
int heightRight = heightOfTree(right);
boolean booleanLeft = isBalanced(left);
boolean booleanRight = isBalanced(right);
return booleanLeft&&booleanRight&&(Math.abs(heightLeft-heightRight)<=1);
}
private int heightOfTree(TreeNode root){
if(root == null) {
return 0;
}
TreeNode left = root.left;
TreeNode right = root.right;
return 1 + Math.max(heightOfTree(left),heightOfTree(right));
}
}
方法2: bottom-up recursion。时间复杂n,空间复杂n。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return getHeight(root) != -1;
}
private int getHeight(TreeNode node) {
if (node == null) return 0;
int left = getHeight(node.left);
int right = getHeight(node.right);
// left, right subtree is unbalanced or cur tree is unbalanced
if (left == -1 || right == -1 || Math.abs(left - right) > 1) return -1;
return Math.max(left, right) + 1;
}
}
总结:
- 这道题目的复杂度分析真的好难,我尝试着不用数学去分析,但是没有搞明白。
本文探讨了两种判断平衡二叉树的方法:自顶向下和自底向上递归。这两种方法分别分析了它们的时间复杂度和空间复杂度,自顶向下方法在最坏情况下可能达到O(n^2),而自底向上方法则为O(n)。通过递归计算左右子树的高度并比较,确保高度差不超过1,从而判断是否为平衡二叉树。
253

被折叠的 条评论
为什么被折叠?



