关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

本文介绍了数据预处理的三种常见方法:标准化(Z-Score)、属性缩放到指定范围以及正则化。标准化通过计算(X-mean)/std实现,可以使用sklearn.preprocessing.scale()或StandardScaler类。属性缩放常用于将数据缩放到1-0之间,使用MinMaxScaler类完成。正则化则是将样本缩放到单位范数,便于计算相似性,可以借助preprocessing.normalize()或Normalizer类完成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、标准化(Z-Score),或者去除均值和方差缩放

公式为:(X-mean)/std  计算时对每个属性/每列分别进行。

将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。

实现时,有两种不同的方式:

  • 使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1 ., - 1 .,  2 .],
...               [ 2 .,  0 .,  0 .],
...               [ 0 .,  1 ., - 1 .]])
>>> X_scaled = preprocessing.scale(X)
 
>>> X_scaled                                         
array([[ 0 .  ..., - 1.22 ...,  1.33 ...],
        [ 1.22 ...,  0 .  ..., - 0.26 ...],
        [- 1.22 ...,  1.22 ..., - 1.06 ...]])
 
>>>#处理后数据的均值和方差
>>> X_scaled.mean(axis= 0 )
array([ 0 .,  0 .,  0 .])
 
>>> X_scaled.std(axis= 0 )
array([ 1 .,  1 .,  1 .])
  • 使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值