[LUOGU] P2759 奇怪的函数

本文介绍了一种使用二分查找法来寻找使得x^x达到指定位数n的最小正整数x的方法。通过计算x^x的位数,利用对数性质,结合二分搜索技巧,最终找到满足条件的最小x值。
题目描述
使得 x^x x 
x
 达到或超过 n 位数字的最小正整数 x 是多少?

输入输出格式
输入格式:
一个正整数 n

输出格式:
使得 x^xx 
x
  达到 n 位数字的最小正整数 x

输入输出样例
输入样例#1: 复制
11
输出样例#1: 复制
10
说明
n<=2000000000

这么大肯定有规律。。嗯.

求数x的位数,常规做法是写一个函数求,但是这就要求得到这个具体的这个数,这里x^x太大,如果不用高精度,肯定是不行的。

考虑一个数x,求它的位数:
log10(1)=0;
log10(10)=1;
log10(100)=2;
每10倍函数值加1,且单调递增,所以,比如log10(5)≈0.699,就可以写出一个len函数
len=floor(log(x)+1);
先+1再floor而不用ceil,实测#7会WA,大概是类似log10(1)的问题。

再考虑求x^x的位数,log(x^x)=xlog(x)

有了判断函数,就难写出一个二分答案的循环。

注意l=mid+1,否则会陷入死循环。

#include<iostream>
#include<cmath>

using namespace std;

typedef long long ll;
ll n;

ll len(ll x){
    return floor(x*log10(x)+1);
}

int main(){
    cin>>n;
    ll l=1,r=1<<30,mid,lenm;
    while(l<r){
        mid=(l+r)>>1;
        lenm=len(mid);
        if(lenm<n) l=mid+1;
        else r=mid;
    }
    cout<<l<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值