USACO: American Heritage

American Heritage

Farmer John takes the heritage of his cows very seriously. He is not, however, a truly fine bookkeeper. He keeps his cow genealogies as binary trees and, instead of writing them in graphic form, he records them in the more linear `tree in-order' and `tree pre-order' notations.

Your job is to create the `tree post-order' notation of a cow's heritage after being given the in-order and pre-order notations. Each cow name is encoded as a unique letter. (You may already know that you can frequently reconstruct a tree from any two of the ordered traversals.) Obviously, the trees will have no more than 26 nodes.

Here is a graphical representation of the tree used in the sample input and output:

                  C
                /   /
               /     /
              B       G
             / /     /
            A   D   H
               / /
              E   F

The in-order traversal of this tree prints the left sub-tree, the root, and the right sub-tree.

The pre-order traversal of this tree prints the root, the left sub-tree, and the right sub-tree.

The post-order traversal of this tree print the left sub-tree, the right sub-tree, and the root.

PROGRAM NAME: heritage

INPUT FORMAT

Line 1: The in-order representation of a tree.
Line 2: The pre-order representation of that same tree.

SAMPLE INPUT (file heritage.in)

ABEDFCHG
CBADEFGH

OUTPUT FORMAT

A single line with the post-order representation of the tree.

SAMPLE OUTPUT (file heritage.out)

AEFDBHGC 

 

解题思路:

这道题没什么复杂度上的难度,只要想清楚了解法就是秒杀

用一个数组保存每个字母所在的子树在字符串中的范围,根据前序串逐个扫描,缩小子树的范围,并对中序串作交换,扫描完成后中序串也就交换完毕变成了后序串

 

比较直观地举个例子:

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值