Topcoder SRM 709 DIV 2 500pt Permatchd2 solution

本文探讨了一种通过添加最少边使图变得漂亮的算法问题。漂亮图定义为每个连通分量边数为偶数的简单无向图。文章提供了解决方案及代码实现,包括直接搜索、构建图和搜索未被访问节点等步骤。

Problem Statement

    

Hero has a simple undirected graph. (Simple means that each edge connects two different vertices, and each pair of vertices is connected by at most one edge.)

A graph is considered pretty if it is a simple undirected graph in which each connected component contains an even number of edges.

You are given the adjacency matrix of Hero's graph as a vector <string> graph. ('Y' means that the two vertices are connected by an edge, 'N' means that they aren't.)

Change Hero's graph into a pretty graph by adding as few edges as possible. Return the minimum number of edges you have to add, or -1 if Hero's graph cannot be changed into a pretty graph.

Definition

    

Class:

Permatchd2

Method:

fix

Parameters:

vector <string>

Returns:

int

Method signature:

int fix(vector <string> graph)

(be sure your method is public)

Limits

    

Time limit (s):

2.000

Memory limit (MB):

256

Stack limit (MB):

256

Notes

-

Don't forget that the graph you'll obtain after adding the edges must still be simple.

Constraints

-

n will be between 1 and 50, inclusive.

-

graph will contain exactly n elements.

-

Each element in graph will contain exactly n characters.

-

Each character in graph will be either 'N' or 'Y'.

-

For all valid i graph[i][i] will be equal to 'N'.

-

For all valid i, j graph[i][j] will be equal to graph[j][i].

Examples

0)

 

    

{"NYN",
 "YNN",
 "NNN"}
Returns: 1

This is the adjacency matrix of a simple graph on three vertices. Two of the three vertices are connected by an edge. Here, an optimal solution is to add one edge that will connect the remaining vertex to one of the other two. The resulting graph is a simple graph with a single connected component. The connected component contains two edges, which is an even number.

1)

 

    

{"NYY",
 "YNN",
 "YNN"}
Returns: 0

2)

 

    

{"NYY",
 "YNY",
 "YYN"}
Returns: -1

3)

 

    

{"NYYY",
 "YNYY",
 "YYNN",
 "YYNN"}
Returns: 1

4)

 

    

{"NYNNNN",
 "YNNNNN",
 "NNNYNN",
 "NNYNNN",
 "NNNNNY",
 "NNNNYN"}
Returns: 3

5)

 

    

{"N"}
Returns: 0

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.


Solution:

  The size of the number of nodes is less than 50, which means we can use direct search on graph.

  First, we build the graph.

  Second, search all the nodes that have not been searched. Create unions with edge and nodes numbers.

  Then we search all the unions and record the number of ugly unions(unions that have odd number of edges).

   If there's only one ugly union in the whole graph, we want to see if all the nodes are connected. If not, we could connect any pair of unconnected nodes to make it a pretty graph. print "1".

   If there exists at least one union with even number of edges, we could create a pretty graph by connecting all ugly unions to this pretty union. print the number of ugly unions.

   If there's only ugly unions in the graph, we connect all of them together and add one edge to any pair of unconnected nodes to make it a pretty graph. print the number of ugly unions - 1 + 1 = number of ugly unions.

  The interesting magic of this problem is that we can reduce the cases to two: only one ugly union & exists at least one pretty union.


Codes:

// BEGIN CUT HERE

// END CUT HERE
#line 5 "Permatchd2.cpp"
#include<bits/stdc++.h>
using namespace std;
int a[55][55];
int size[55];
int edge, node;
int vis[55];
int kk[55], gg[55];
int ss;
bool flag;
void dfs(int root){
 vis[root] = 1;
 edge += size[root];
 for(int i = 1; i <= size[root]; i++){
  if(!vis[a[root][i]]){
   node++;
   dfs(a[root][i]);
  }
 }
}
class Permatchd2 {
 public:
 int fix(vector <string> graph) {
  int n = graph.size();
  for(int i = 0; i < n; i++){
   for(int j = 0; j < n; j++){
    if(graph[i][j] == 'Y') size[i]++, a[i][size[i]] = j;
   }
  }
  for(int i = 0; i < n; i++){
   edge = 0, node = 1;
   if(!vis[i]){
    ss++;
    dfs(i);
    kk[ss] = edge / 2;
    gg[ss] = node;
    if(kk[ss] < node * (node - 1) / 2){
     flag = 1;
    }
   }
  }
  int count = 0;
  for(int i = 1; i <= ss; i++){
   if(kk[i] % 2 == 1) count++;
  }
  //return count;
  int ans = 0, remain = ss - count;
  if(ss == 1 && count == 1) {
   if(flag) return 1;
   else return (-1);
  }
  else return count;
 }
};


代码下载地址: https://pan.quark.cn/s/bc087ffa872a "测控电路课后习题详解"文件.pdf是一份极具价值的学术资料,其中系统地阐述了测控电路的基础理论、系统构造、核心特性及其实际应用领域。 以下是对该文献的深入解读和系统梳理:1.1测控电路在测控系统中的核心功能测控电路在测控系统的整体架构中扮演着不可或缺的角色。 它承担着对传感器输出信号进行放大、滤除杂音、提取有效信息等关键任务,并且依据测量与控制的需求,执行必要的计算、处理与变换操作,最终输出能够驱动执行机构运作的指令信号。 测控电路作为测控系统中最具可塑性的部分,具备易于放大信号、转换模式、传输数据以及适应多样化应用场景的优势。 1.2决定测控电路精确度的关键要素影响测控电路精确度的核心要素包括:(1)噪声与干扰的存在;(2)失调现象与漂移效应,尤其是温度引起的漂移;(3)线性表现与保真度水平;(4)输入输出阻抗的特性影响。 在这些要素中,噪声干扰与失调漂移(含温度效应)是最为关键的因素,需要给予高度关注。 1.3测控电路的适应性表现测控电路在测控系统中展现出高度的适应性,具体表现在:* 具备选择特定信号、灵活实施各类转换以及进行信号处理与运算的能力* 实现模数转换与数模转换功能* 在直流与交流、电压与电流信号之间进行灵活转换* 在幅值、相位、频率与脉宽信号等不同参数间进行转换* 实现量程调整功能* 对信号实施多样化的处理与运算,如计算平均值、差值、峰值、绝对值,进行求导数、积分运算等,以及实现非线性环节的线性化处理、逻辑判断等操作1.4测量电路输入信号类型对电路结构设计的影响测量电路的输入信号类型对其电路结构设计产生显著影响。 依据传感器的类型差异,输入信号的形态也呈现多样性。 主要可分为...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值