An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include <stdio.h>
#include <stdlib.h>
#define MaxTree 10
#define Null -1
#define ERROR -1
typedef int ElementType;
typedef struct AVLNode *AVLTree;
struct AVLNode {
ElementType Element;
AVLTree Left, Right;
int Height;
};
int Max(int a, int b);
int GetHeight(AVLTree A);
AVLTree SingleLL(AVLTree A);
AVLTree SingleRR(AVLTree A);
AVLTree DoubleLR(AVLTree A);
AVLTree DoubleRL(AVLTree A);
AVLTree Insert(AVLTree T, ElementType ElemX);
int main()
{
int i, N, ElemX;
AVLTree T1;
scanf("%d\n%d", &N,&ElemX);
T1 = (AVLTree)malloc(sizeof(struct AVLNode));
T1->Element = ElemX;
T1->Height = 0;
T1->Left = T1->Right = NULL;
for (i = 1; i < N; i++)
{
scanf("%d", &ElemX);
T1 = Insert(T1, ElemX);
}
printf("%d\n", T1->Element);
system("pause");
return 0;
}
int Max(int a, int b)
{
return a > b ? a : b;
}
int GetHeight(AVLTree A)
{
int Height;
if (!A)
Height = 0;
else
Height = Max(GetHeight(A->Left), GetHeight(A->Right))+1;
return Height;
}
AVLTree SingleLL(AVLTree A)
{
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max(GetHeight(A->Right), GetHeight(A->Left)) + 1;
B->Height = Max(GetHeight(B->Right), GetHeight(B->Left)) + 1;
return B;
}
AVLTree SingleRR(AVLTree A)
{
AVLTree B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max(GetHeight(A->Right), GetHeight(A->Left)) + 1;
B->Height = Max(GetHeight(B->Right), GetHeight(B->Left)) + 1;
return B;
}
AVLTree DoubleLR(AVLTree A)
{
/* 将A、B与C做两次单旋,返回新的根结点C */
/* 将B与C做右单旋,C被返回 */
A->Left = SingleRR(A->Left);
/* 将A与C做左单旋,C被返回 */
return SingleLL(A);
}
AVLTree DoubleRL(AVLTree A)
{
A->Right = SingleLL(A->Right);
return SingleRR(A);
}
AVLTree Insert(AVLTree T, ElementType ElemX)
{
if (!T)
{
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->Element = ElemX;
T->Height = 0;
T->Left = T->Right = NULL;
}
else if (ElemX < T->Element)
{
T->Left = Insert(T->Left, ElemX);
if (GetHeight(T->Left) - GetHeight(T->Right)==2)
if (ElemX < T->Left->Element)
T = SingleLL(T);
else
T = DoubleLR(T);
}
else if (ElemX>T->Element)
{
T->Right = Insert(T->Right, ElemX);
if (GetHeight(T->Right) - GetHeight(T->Left) == 2)
if (ElemX > T->Right->Element)
T = SingleRR(T);
else
T = DoubleRL(T);
}
T->Height = Max(GetHeight(T->Left), GetHeight(T->Right)) + 1;
return T;
}