Python Challenge 04 Solution

本文介绍了一个使用Python解决递归网页谜题的过程。通过解析特定URL中的内容并提取下一个链接,逐步解开谜题。涉及Python的urllib库和正则表达式的使用。

gist: https://gist.github.com/genesislive/5097515


#!/usr/bin/env python
# -*- coding: UTF-8 -*-
 
# http://www.pythonchallenge.com/pc/def/linkedlist.php
 
import urllib, re
 
uri = 'http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=%s'
nothing = '12345' # '8022'
pattern = 'and the next nothing is (\d+)'
 
while True:
    try:
        content = urllib.urlopen(uri % nothing).read()
        print content
        nothing = re.search(pattern, content).group(1)
        # print nothing
    except AttributeError:
        # AttributeError: 'NoneType' object has no attribute 'group'
        
        # if you see 'Yes. Divide by two and keep going.', just div
        # the latest nothing by 2 and try again.
        
        break
 
print nothing


【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值