法国INRIA的Fisher向量实现INRIA's Fisher vector implementation

这是一个由INRIA提供的Matlab实现,用于图像检索中局部描述符的Fisher向量处理链。该实现基于2011年发表的两篇论文,并且是开源的,不同于Xerox的闭源实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

INRIA's Fisher vector implementation

What is this?

This is a Matlab implementation of the Fisher processing chain used in It is  INRIA 's implementation, as opposed to that of Xerox, which is closed-source.

How to use

You will need:

On 64-bit Linux, if everything works well, the following steps should be enough:
http://lear.inrialpes.fr/src/inria_fisher/inria_fisher_v1.tgz
tar xvzf inria_fisher_v1.tgz
cd inria_fisher_v1
wget http://lear.inrialpes.fr/src/inria_fisher/inria_fisher_data_v1.tgz
tar xvzf inria_fisher_data_v1.tgz
wget http://pascal.inrialpes.fr/data/holidays/siftgeo.tar.gz
tar xzf siftgeo.tar.gz
mkdir -p yael/matlab
cd yael/matlab
wget https://gforge.inria.fr/frs/download.php/30399/yael_matlab_linux64_v277.tar.gz
tar xvzf yael_matlab_linux64_v277.tar.gz 
cd ../..
Then run  test_fisher  in Matlab. This computes Fisher descriptors (k=64) for the Holidays dataset (from the local descriptors in siftgeo/). Then it performs exact NN-searches with the L2 distance on the Holidays query images. After about 10 minutes, it should display:
Fisher k=64                     4096D   mAP = 0.599
Fisher + PCA (D'=128)            128D   mAP = 0.561
These numbers correspond to the 59.5 and 56.5 figures in Table I of the PAMI paper (the implementation is not exactly the same).

The PQ compression is not implemented in this version. GMM learning is implemented in Yael but not interfaced in Matlab. Dense descriptors local are implemented in compute_descriptors (-dense option) but no corresponding GMM is provided yet. You may be interested in this package, that also implements compression with PQ codes (on different descriptors).

What to cite

If you use the package in a publication, please cite
@article{JEGOU-2011-633013,
    url = {http://hal.inria.fr/inria-00633013},
    title = {{Aggregating local image descriptors into compact codes}},
    author = {J{\'e}gou, Herv{\'e} and Perronnin, Florent and Douze, Matthijs and S{\'a}nchez, Jorge and P{\'e}rez, Patrick and Schmid, Cordelia},
    publisher = {IEEE},
    journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
    year = {2011},
    pdf = {http://hal.inria.fr/inria-00633013/PDF/jegou\_aggregate.pdf},
}

Contact, license

If the package does not work, you may complain to
matthijs dot douze at inria dot fr.
It is licensed under  Cecill , similar to the GPL. Please note that some techniques (eg. SIFT and Fisher) may be covered by non-INRIA software patents.

Last modification on 2012-04-09 by Matthijs Douze.


from: https://lear.inrialpes.fr/src/inria_fisher/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值