OpenCV中实现了两个版本的高斯混合背景/前景分割方法(Gaussian Mixture-based Background/Foreground Segmentation Algorithm)[1-2],调用接口很明朗,效果也很好。
BackgroundSubtractorMOG 使用示例
- int main(){
- VideoCapture video("1.avi");
- Mat frame,mask,thresholdImage, output;
- video>>frame;
- BackgroundSubtractorMOG bgSubtractor(20,10,0.5,false);
- while(true){
- video>>frame;
- ++frameNum;
- bgSubtractor(frame,mask,0.001);
- imshow("mask",mask);
- waitKey(10);
- }
- return 0;
- }
构造函数可以使用默认构造函数或带形参的构造函数:
- BackgroundSubtractorMOG::BackgroundSubtractorMOG()
- BackgroundSubtractorMOG::BackgroundSubtractorMOG(int history, int nmixtures,
- double backgroundRatio, double noiseSigma=0)
其中history为使用历史帧的数目,nmixtures为混合高斯数量,backgroundRatio为背景比例,noiseSigma为噪声权重。
而调用的接口只有重载操作符():
- void BackgroundSubtractorMOG::operator()(InputArray image, OutputArray fgmask, double learningRate=0)
以下是使用BackgroundSubtractorMOG进行前景/背景检测的一个截图。
BackgroundSubtractorMOG2 使用示例
- int main(){
- VideoCapture video("1.avi");
- Mat frame,mask,thresholdImage, output;
- //video>>frame;
- BackgroundSubtractorMOG2 bgSubtractor(20,16,true);
- while(true){
- video>>frame;
- ++frameNum;
- bgSubtractor(frame,mask,0.001);
- cout<<frameNum<<endl;
- //imshow("mask",mask);
- //waitKey(10);
- }
- return 0;
- }
同样的,构造函数可以使用默认构造函数和带形参的构造函数
- BackgroundSubtractorMOG2::BackgroundSubtractorMOG2()
- BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(int history,
- float varThreshold, bool bShadowDetection=true )
history同上,varThreshold表示马氏平方距离上使用的来判断是否为背景的阈值(此值不影响背景更新速率),bShadowDetection表示是否使用阴影检测(如果开启阴影检测,则mask中使用127表示阴影)。
使用重载操作符()调用每帧检测函数:
- void BackgroundSubtractorMOG2::operator()(InputArray image, OutputArray fgmask, double learningRate=-1)
同时BackgroundSubtractorMOG2提供了getBackgroundImage()函数用以返回背景图像:
- void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage)
另外OpenCV的refman中说新建对象以后还有其他和模型油有关的参数可以修改,不过比较坑的是opencv把这个这些函数参数声明为protected,同时没有提供访问接口,所以要修改的话还是要自己修改源文件提供访问接口。
- protected:
- Size frameSize;
- int frameType;
- Mat bgmodel;
- Mat bgmodelUsedModes;//keep track of number of modes per pixel
- int nframes;
- int history;
- int nmixtures;
- //! here it is the maximum allowed number of mixture components.
- //! Actual number is determined dynamically per pixel
- double varThreshold;
- // threshold on the squared Mahalanobis distance to decide if it is well described
- // by the background model or not. Related to Cthr from the paper.
- // This does not influence the update of the background. A typical value could be 4 sigma
- // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
- /////////////////////////
- // less important parameters - things you might change but be carefull
- ////////////////////////
- float backgroundRatio;
- // corresponds to fTB=1-cf from the paper
- // TB - threshold when the component becomes significant enough to be included into
- // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
- // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
- // it is considered foreground
- // float noiseSigma;
- float varThresholdGen;
- //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
- //when a sample is close to the existing components. If it is not close
- //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
- //Smaller Tg leads to more generated components and higher Tg might make
- //lead to small number of components but they can grow too large
- float fVarInit;
- float fVarMin;
- float fVarMax;
- //initial variance for the newly generated components.
- //It will will influence the speed of adaptation. A good guess should be made.
- //A simple way is to estimate the typical standard deviation from the images.
- //I used here 10 as a reasonable value
- // min and max can be used to further control the variance
- float fCT;//CT - complexity reduction prior
- //this is related to the number of samples needed to accept that a component
- //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
- //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
- //shadow detection parameters
- bool bShadowDetection;//default 1 - do shadow detection
- unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
- float fTau;
- // Tau - shadow threshold. The shadow is detected if the pixel is darker
- //version of the background. Tau is a threshold on how much darker the shadow can be.
- //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
- //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
以下是使用BackgroundSubtractorMOG2检测的前景和背景:
参考文献:
[1] KaewTraKulPong, Pakorn, and Richard Bowden. "An improved adaptive background mixture model for real-time tracking with shadow detection." Video-Based Surveillance Systems. Springer US, 2002. 135-144.
[2] Zivkovic, Zoran. "Improved adaptive Gaussian mixture model for background subtraction." Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. Vol. 2. IEEE, 2004.