HDU_1535 Invitation Cards (邀请卡片)

Malidinesia的Antique Comedians为了推广剧院,雇佣学生在公交站分发邀请卡片。每个学生负责一个公交站,每天往返于中央检查站(CCS)。公交线路都是单向的,每半小时一班,且所有线路都经过CCS。题目要求计算最小的交通费用以供学生每天出行。输入包含多组案例,每组包括站点数、线路数及各线路费用,目标是找到从CCS出发到所有站点再返回CCS的最低总费用。解决方案是构建正反两张图,分别求以1为源点的单源最短路径,结果相加即为答案。

邀请卡片

链接

HDU_1535 Invitation Cards(邀请卡片)

Describe

In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery.

The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where ‘X’ denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan.

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees.

Input

The input consists of N N N cases. The first line of the input contains only positive integer N N N. Then follow the cases. Each case begins with a line containing exactly two integers P P P and Q Q Q, 1 ≤ P , Q ≤ 1000000 1 \le P,Q \le 1000000 1P,Q1000000. P P P is the number of stops including CCS and Q Q Q the number of bus lines. Then there are Q Q Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1 1 1. Prices are positive integers the sum of which is smaller than 1000000000 1000000000 1000000000. You can also assume it is always possible to get from any stop to any other stop.

Output

For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers.

Sample Input

2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50

Sample Output

46
210

解析

构造正、反两张图,并对两张图都求一次以 1 1 1 为源点的单源最短路,把两次求得的结果加起来就是问题的答案。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
struct str
{
	long long to,val,nxt;
}edg[2][1000011];
long long t,n,m,a,b,c,ans;
long long cnt,lst[2][1000011],dis[1000011];
bool vis[1000011];
queue<long long> que;
void add(long long frm,long long to,long long val,long long x)
{
	edg[x][cnt].to=to;
	edg[x][cnt].val=val;
	edg[x][cnt].nxt=lst[x][frm];
	lst[x][frm]=cnt;
}
long long spfa(long long x)
{
	while(!que.empty())
		que.pop();
	memset(vis,false,sizeof(vis));
	memset(dis,0x3f,sizeof(dis));
	que.push(1);
	dis[1]=0;
	vis[1]=true;
	while(!que.empty())
	{
		long long now=que.front();
		que.pop();
		vis[now]=false;
		for(long long i=lst[x][now];i;i=edg[x][i].nxt)
		{
			long long nxtt=edg[x][i].to,nxtv=edg[x][i].val;
			if(dis[nxtt]>dis[now]+nxtv)
			{
				dis[nxtt]=dis[now]+nxtv;
				if(!vis[nxtt])
				{
					vis[nxtt]=true;
					que.push(nxtt);
				}
			}
		}
	}
	long long tot=0;
	for(long long i=1;i<=n;i++)
		tot+=dis[i];
	return tot;
}
int main()
{
	scanf("%lld",&t);
	for(long long i=1;i<=t;i++)
	{
		memset(lst,0,sizeof(lst));
		cnt=0;
		scanf("%lld%lld",&n,&m);
		for(long long j=1;j<=m;j++)
		{
			scanf("%lld%lld%lld",&a,&b,&c);
			cnt++; 
			add(a,b,c,0);//用0和1分别代表正图和反图
			add(b,a,c,1);
		}
		ans=spfa(0)+spfa(1);
		printf("%lld\n",ans);
	}
	return 0;
}
下载方式:https://pan.quark.cn/s/b4d8292ba69a 在构建食品品牌的市场整合营销推广方案时,我们必须首先深入探究品牌的由来、顾客的感知以及市场环境。 此案例聚焦于一款名为“某饼干产品”的食品,该产品自1998年进入河南市场以来,经历了销售业绩的波动。 1999至2000年期间,其销售额取得了明显的上升,然而到了2001年则出现了下滑。 在先前的宣传活动中,品牌主要借助大型互动活动如ROAD SHOW来吸引顾客,但收效甚微,这揭示了宣传信息与顾客实际认同感之间的偏差。 通过市场环境剖析,我们了解到消费者对“3+2”苏打夹心饼干的印象是美味、时尚且充满活力,但同时亦存在口感腻、价位偏高、饼身坚硬等负面评价。 实际上,该产品可以塑造为兼具美味、深度与创新性的休闲食品,适宜在多种情境下分享。 这暗示着品牌需更精确地传递产品特性,同时消解消费者的顾虑。 在策略制定上,我们可考虑将新产品与原有的3+2苏打夹心进行协同推广。 这种策略的长处在于能够借助既有产品的声誉和市场占有率,同时通过新产品的加入,刷新品牌形象,吸引更多元化的消费群体。 然而,这也可能引发一些难题,例如如何合理分配新旧产品间的资源,以及如何保障新产品的独特性和吸引力不被既有产品所掩盖。 为了提升推广成效,品牌可以实施以下举措:1. **定位修正**:基于消费者反馈,重新确立产品定位,突出其美味、创新与共享的特性,减少消费者感知的缺陷。 2. **创新宣传**:宣传信息应与消费者的实际体验相契合,运用更具魅力的创意手段,例如叙事式营销,让消费者体会到产品带来的愉悦和情感共鸣。 3. **渠道选择**:在目标消费者常去的场所开展活动,例如商业中心、影院或在线平台,以提高知名度和参与度。 4. **媒体联...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值