HDU_1535 Invitation Cards (邀请卡片)

Malidinesia的Antique Comedians为了推广剧院,雇佣学生在公交站分发邀请卡片。每个学生负责一个公交站,每天往返于中央检查站(CCS)。公交线路都是单向的,每半小时一班,且所有线路都经过CCS。题目要求计算最小的交通费用以供学生每天出行。输入包含多组案例,每组包括站点数、线路数及各线路费用,目标是找到从CCS出发到所有站点再返回CCS的最低总费用。解决方案是构建正反两张图,分别求以1为源点的单源最短路径,结果相加即为答案。

邀请卡片

链接

HDU_1535 Invitation Cards(邀请卡片)

Describe

In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery.

The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where ‘X’ denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan.

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees.

Input

The input consists of N N N cases. The first line of the input contains only positive integer N N N. Then follow the cases. Each case begins with a line containing exactly two integers P P P and Q Q Q, 1 ≤ P , Q ≤ 1000000 1 \le P,Q \le 1000000 1P,Q1000000. P P P is the number of stops including CCS and Q Q Q the number of bus lines. Then there are Q Q Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1 1 1. Prices are positive integers the sum of which is smaller than 1000000000 1000000000 1000000000. You can also assume it is always possible to get from any stop to any other stop.

Output

For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers.

Sample Input

2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50

Sample Output

46
210

解析

构造正、反两张图,并对两张图都求一次以 1 1 1 为源点的单源最短路,把两次求得的结果加起来就是问题的答案。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
struct str
{
	long long to,val,nxt;
}edg[2][1000011];
long long t,n,m,a,b,c,ans;
long long cnt,lst[2][1000011],dis[1000011];
bool vis[1000011];
queue<long long> que;
void add(long long frm,long long to,long long val,long long x)
{
	edg[x][cnt].to=to;
	edg[x][cnt].val=val;
	edg[x][cnt].nxt=lst[x][frm];
	lst[x][frm]=cnt;
}
long long spfa(long long x)
{
	while(!que.empty())
		que.pop();
	memset(vis,false,sizeof(vis));
	memset(dis,0x3f,sizeof(dis));
	que.push(1);
	dis[1]=0;
	vis[1]=true;
	while(!que.empty())
	{
		long long now=que.front();
		que.pop();
		vis[now]=false;
		for(long long i=lst[x][now];i;i=edg[x][i].nxt)
		{
			long long nxtt=edg[x][i].to,nxtv=edg[x][i].val;
			if(dis[nxtt]>dis[now]+nxtv)
			{
				dis[nxtt]=dis[now]+nxtv;
				if(!vis[nxtt])
				{
					vis[nxtt]=true;
					que.push(nxtt);
				}
			}
		}
	}
	long long tot=0;
	for(long long i=1;i<=n;i++)
		tot+=dis[i];
	return tot;
}
int main()
{
	scanf("%lld",&t);
	for(long long i=1;i<=t;i++)
	{
		memset(lst,0,sizeof(lst));
		cnt=0;
		scanf("%lld%lld",&n,&m);
		for(long long j=1;j<=m;j++)
		{
			scanf("%lld%lld%lld",&a,&b,&c);
			cnt++; 
			add(a,b,c,0);//用0和1分别代表正图和反图
			add(b,a,c,1);
		}
		ans=spfa(0)+spfa(1);
		printf("%lld\n",ans);
	}
	return 0;
}
源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值