HDU_1535 Invitation Cards (邀请卡片)

Malidinesia的Antique Comedians为了推广剧院,雇佣学生在公交站分发邀请卡片。每个学生负责一个公交站,每天往返于中央检查站(CCS)。公交线路都是单向的,每半小时一班,且所有线路都经过CCS。题目要求计算最小的交通费用以供学生每天出行。输入包含多组案例,每组包括站点数、线路数及各线路费用,目标是找到从CCS出发到所有站点再返回CCS的最低总费用。解决方案是构建正反两张图,分别求以1为源点的单源最短路径,结果相加即为答案。

邀请卡片

链接

HDU_1535 Invitation Cards(邀请卡片)

Describe

In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery.

The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where ‘X’ denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan.

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees.

Input

The input consists of N N N cases. The first line of the input contains only positive integer N N N. Then follow the cases. Each case begins with a line containing exactly two integers P P P and Q Q Q, 1 ≤ P , Q ≤ 1000000 1 \le P,Q \le 1000000 1P,Q1000000. P P P is the number of stops including CCS and Q Q Q the number of bus lines. Then there are Q Q Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1 1 1. Prices are positive integers the sum of which is smaller than 1000000000 1000000000 1000000000. You can also assume it is always possible to get from any stop to any other stop.

Output

For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers.

Sample Input

2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50

Sample Output

46
210

解析

构造正、反两张图,并对两张图都求一次以 1 1 1 为源点的单源最短路,把两次求得的结果加起来就是问题的答案。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
struct str
{
	long long to,val,nxt;
}edg[2][1000011];
long long t,n,m,a,b,c,ans;
long long cnt,lst[2][1000011],dis[1000011];
bool vis[1000011];
queue<long long> que;
void add(long long frm,long long to,long long val,long long x)
{
	edg[x][cnt].to=to;
	edg[x][cnt].val=val;
	edg[x][cnt].nxt=lst[x][frm];
	lst[x][frm]=cnt;
}
long long spfa(long long x)
{
	while(!que.empty())
		que.pop();
	memset(vis,false,sizeof(vis));
	memset(dis,0x3f,sizeof(dis));
	que.push(1);
	dis[1]=0;
	vis[1]=true;
	while(!que.empty())
	{
		long long now=que.front();
		que.pop();
		vis[now]=false;
		for(long long i=lst[x][now];i;i=edg[x][i].nxt)
		{
			long long nxtt=edg[x][i].to,nxtv=edg[x][i].val;
			if(dis[nxtt]>dis[now]+nxtv)
			{
				dis[nxtt]=dis[now]+nxtv;
				if(!vis[nxtt])
				{
					vis[nxtt]=true;
					que.push(nxtt);
				}
			}
		}
	}
	long long tot=0;
	for(long long i=1;i<=n;i++)
		tot+=dis[i];
	return tot;
}
int main()
{
	scanf("%lld",&t);
	for(long long i=1;i<=t;i++)
	{
		memset(lst,0,sizeof(lst));
		cnt=0;
		scanf("%lld%lld",&n,&m);
		for(long long j=1;j<=m;j++)
		{
			scanf("%lld%lld%lld",&a,&b,&c);
			cnt++; 
			add(a,b,c,0);//用0和1分别代表正图和反图
			add(b,a,c,1);
		}
		ans=spfa(0)+spfa(1);
		printf("%lld\n",ans);
	}
	return 0;
}
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值