[LeetCode ] House Robber

本文探讨了一个经典的计算机科学问题——强盗抢劫问题,即如何在不连续抢劫相邻房屋的情况下,最大化所获金额。通过使用动态规划方法,文章详细解释了如何计算并返回在给定条件下可抢夺的最大金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.

题意:强盗抢劫,不能抢相邻的两家,问最多能抢多少钱?

思路:线性dp,dp[i][0]表示不抢第i家的最多抢多少钱,dp[i][1]表示抢第i家最多抢多少钱。

dp[i][0]=max( dp[i-1][0],dp[i-1][1] )

dp[i][1]=nums[i] + max( dp[i-1][0],dp[i-2][1] )

class Solution {
    public int rob(int[] nums) {
        if(nums.length == 0) return 0;
        if(nums.length == 1) return nums[0];
        int dp[][] = new int[nums.length][2];
        dp[0][0] = 0;
        dp[0][1] = nums[0];
        dp[1][0] = nums[0];
        dp[1][1] = nums[1];
        for(int i = 2; i < nums.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0],dp[i - 1][1]);
            dp[i][1] = nums[i] + Math.max(dp[i - 1][0],dp[i - 2][1]);
        }
        return Math.max(dp[nums.length - 1][0],dp[nums.length - 1][1]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值