HDU1540 Tunnel Warfare(线段树区间合并)

本文介绍了如何利用线段树解决HDU1540 Tunnel Warfare问题。在抗日战争期间,华北平原的地道战中,村庄形成线性连接。题目给出一系列村庄破坏和修复的事件,需要计算每个村庄直接或间接连接的村庄数量。通过建立线段树,可以有效地进行区间合并与查询操作。示例输入和输出展示了线段树在处理这类问题上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDU1540  Tunnel Warfare(线段树区间合并)

During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast areas of north China Plain. Generally speaking, villages connected by tunnels lay in a line. Except the two at the ends, every village was directly connected with two neighboring ones.
Frequently the invaders launched attack on some of the villages and destroyed the parts of tunnels in them. The Eighth Route Army commanders requested the latest connection state of the tunnels and villages. If some villages are severely isolated, restoration of connection must be done immediately!
Input
The first line of the input contains two positive integers n and m (n, m ≤ 50,000) indicating the number of villages and events. Each of the next m lines describes an event.
There are three different events described in different format shown below:
D x: The x-th village was destroyed.
Q x: The Army commands requested the number of villages that x-th village was directly or indirectly connected with including itself.
R: The village destroyed last was rebuilt.
Output
Output the answer to each of the Army commanders’ request in order on a separate line.
Sample Input
    7 9
    D 3
    D 6
    D 5
    Q 4
    Q 5
    R
    Q 4
    R
    Q 4
Sample Output
    1
    0
    2
    4

题意:有n个村庄排成一列,一开始村庄都与相邻村庄通过地下通道相连,D代表 把这个村庄与相邻的村庄隔断,R代表修复上一个被隔断的村庄,即与相邻村庄重新相连,Q代表查询这个村庄能与多少个村庄相连,包括自己

思路:线段树区间合并题,ls表示从左边界开始的最长连续区间,rs表示从右边界开始的最长连续区间,maxs代表该区间内的最长连续区间,建树的时候ls,rs,maxs初始化为r-l+1,更新时为单点更新,pushdown时,先让 ls为左子树的ls,rs为右子树的rs,然后如果左子树的ls等于左子树的区间长,则父节点的ls能与右子树的ls相连,rs同理,maxs则为左子树的maxs 右子树的maxs 左子树rs加右子树ls的最大值,查询时,看代码注释

#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAXN=50005;
struct NODE{
	int l,r;
	int ls,rs,maxs;
}segTree[MAXN<<2];
void build(int num,int l,int r)
{
	segTree[num].l=l;
	segTree[num].r=r;
	segTree[num].ls=segTree[num].rs=segTree[num].maxs=r-l+1;
	if(l==r)  return;
	int mid=(l+r)>>1;
	build(num<<1,l,mid);
	build(num<<1|1,mid+1,r);
}
void update(int num,int t,int val)
{
	if(segTree[num].l==segTree[num].r)
	{
		if(val==1) segTree[num].ls=segTree[num].rs=segTree[num].maxs=1;
		else  segTree[num].ls=segTree[num].rs=segTree[num].maxs=0;
		return;
	}
	int mid=(segTree[num].l+segTree[num].r)>>1;
	if(t<=mid) update(num<<1,t,val);
	else update((num<<1)|1,t,val);
	
	segTree[num].ls=segTree[num<<1].ls;
	segTree[num].rs=segTree[(num<<1)|1].rs;
	segTree[num].maxs=max(segTree[num<<1].maxs,segTree[(num<<1)|1].maxs);
	segTree[num].maxs=max(segTree[num].maxs,segTree[num<<1].rs+segTree[(num<<1)|1].ls);
	
	if(segTree[num<<1].ls==segTree[num<<1].r-segTree[num<<1].l+1)
	   segTree[num].ls+=segTree[(num<<1)|1].ls;
	if(segTree[num<<1|1].rs==segTree[num<<1|1].r-segTree[(num<<1)|1].l+1)
	   segTree[num].rs+=segTree[num<<1].rs;      
}
int query(int num,int t)
{
          //多了个剪枝,如果一个区间的最大连续区间为0,或等于区间长度,则返回
         if(segTree[num].l==segTree[num].r||segTree[num].maxs==0||segTree[num].maxs==segTree[num].r-segTree[num].l+1)
	  return segTree[num].maxs;
	int mid=(segTree[num].l+segTree[num].r)>>1;
	
	if(t<=mid)
	{
                   //t在左子树的rs里,能右子树的ls相连
              if(t>=segTree[num<<1].r-segTree[num<<1].rs+1)
		 return query(num<<1,t)+query(num<<1|1,mid+1);
		else return query(num<<1,t);   
	}
	else
	{
                   //同理
              if(t<=segTree[num<<1|1].l+segTree[num<<1|1].ls-1)
		 return query(num<<1|1,t)+query(num<<1,mid);
		else 
		   return query(num<<1|1,t);   
	}    
}
int stack[MAXN];
int main(void)
{
	int n,m;
	int t;
	char op[2];
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		build(1,1,n);
		int top=0;
		while(m--)
		{
			scanf("%s",op);
			if(op[0]=='D')
			{
				scanf("%d",&t);
				stack[top++]=t;
				update(1,t,0);
			}
			else if(op[0]=='Q')
			{
			    scanf("%d",&t);
			    printf("%d\n",query(1,t));
			}
			else{
				if(t>0)
				{
					t=stack[--top];
					update(1,t,1);
				}
			}
		}
	}
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值