HDU - 1532 Drainage Ditches

本文介绍了一种解决农场排水问题的最大流算法实现。通过构建复杂的网络模型,并使用BFS来寻找增广路径,该算法可以高效地计算出水从农田流向溪流的最大速率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

题解:最大流问题,图论书P271,通过在残留网络中寻找从源y到汇t的最短路径方式寻找增广路并增广,最终求网络最大流。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 210
#define inf 0x3f3f3f3f
using namespace std;
int m,n;//排水沟的数目,汇合结点数目
int y,t;//源点(结点1),汇点(结点n)
int res[N][N];//残留网络
int qu[N*N],qe,qs;//队列,队首和队尾
int pre[N];//增广路上顶点i前面的顶点序号
int vis[N];//bfs中各顶点的访问标志
int maxflow,min_augment;//最大流流量,每次增广时的可改进量
struct node//邻接矩阵,存放流,及容量
{
    int c,f;
} e[N][N];
void findd()//bfs求增广路
{
    int i,st;
    memset(vis,0,sizeof(vis));
    memset(res,0,sizeof(res));
    memset(pre,0,sizeof(pre));
    qs=0,qe=1,qu[qs]=y,vis[y]=1;
    while(qs<qe&&pre[t]==0)//不为空
    {
        st=qu[qs];//队首
        for(i=1; i<=n; i++)
        {
            if(vis[i]==0)
            {
                if(e[st][i].c-e[st][i].f>0)
                {
                    res[st][i]=e[st][i].c-e[st][i].f;
                    pre[i]=st;
                    qu[qe++]=i;
                    vis[i]=1;
                }
                else if(e[i][st].f>0)
                {
                    res[st][i]=e[i][st].f;
                    pre[i]=st;
                    qu[qe++]=i;
                    vis[i]=1;
                }
            }
        }
        qs++;
    }
}
void augflow()
{
    int i=t,j;//t为汇点
    if(!pre[i])
    {
        min_augment=0;
        return;
    }
    j=inf;
    while(i!=y)//计算增广路上可改进量的最小值
    {
        if(res[pre[i]][i]<j)
            j=res[pre[i]][i];
        i=pre[i];
    }
    min_augment=j;
}
void upflow()//调整流量
{
    int i=t;//t为汇点
    if(!pre[i])
        return;
    while(i!=y)
    {
        if(e[pre[i]][i].c-e[pre[i]][i].f>0)
            e[pre[i]][i].f+= min_augment;
        else if(e[i][pre[i]].f>0)
            e[pre[i]][i].f+= min_augment;
        i=pre[i];
    }
}
void solve()
{
    y=1,t=n;
    maxflow=0;
    while(1)
    {
        findd();//寻找增广路
        augflow();//计算可改进量
        maxflow+=min_augment;
        if(min_augment>0)
            upflow();//更新流
        else
            return;
    }
}
int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        int i,j,s,E,c;
        memset(e,0,sizeof(e));
        for(i=0; i<m; i++)
        {
            scanf("%d%d%d",&s,&E,&c);
            e[s][E].c+=c;
        }
        solve();
        printf("%d\n",maxflow);
    }
    return 0;
}

 

一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值