几何矩的由来及应用

 矩是描述图像特征的算子,它在模式识别与图像分析领域中有重要的应用.迄今为止,常见的矩描述子可以分为以下几种:几何矩、正交矩、复数矩和旋转矩.其中几何矩提出的时间最早且形式简单,对它的研究最为充分。几何矩对简单图像有一定的描述能力,他虽然在区分度上不如其他三种矩,但与其他几种算子比较起来,他极其的简单,一般只需用一个数字就可表达。所以,一般我们是用来做大粒度的区分,用来过滤显然不相关的文档。
比如在图形库中,可能有100万幅图,也许只有200幅图是我们想要的。使用一维的几何矩的话,就可以对几何矩进行排序,建立索引,然后选出与目标图的几何矩最近的2000幅图作比较就好了。而对于其他的矩来说,由于一般是多维的关系,一般不好排序,只能顺序查找,自然速度有巨大的差别.所以。虽然几何矩不太能选出最像的,但可以快速排除不像的,提高搜索效率。

几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,图像f(x,y)的(p+q)阶几何矩定义为 Mpq =∫∫(x^p)*(y^q)f(x,y)dxdy(p,q = 0,1,……∞)
矩在统计学中被用来反映随机变量的分布情况,推广到力学中,它被用作刻画空间物体的质量分布。同样的道理,如果我们将图像的灰度值看作是一个二维或三维的密度分布函数,那么矩方法即可用于图像分析领域并用作图像特征的提取。最常用的,物体的零阶矩表示了图像的 质量 :Moo= ∫∫f(x,y )dxdy 一阶矩(M01,M10)用于确定图像质心( Xc,Yc):Xc = M10/M00;Yc = M01/M00;
若将坐标原点移至 Xc和 Yc处,就得到了对于图像位移不变的中心矩。如
Upq =∫∫[(x-Xc)^p]*[(y-Yc)^q]f(x,y)dxdy。Hu在文中提出了7个几何矩的不变量,这些不变量满足于图像平移、伸缩和旋转不变。如果定义
Zpq=Upq/(U20 + U02)^(p+q+2),Hu 的7种矩为:
H1=Z20+Z02;H1=(Z20+Z02)^2+4Z11^2;......


几种简单的几何矩:
令平面上点坐标为P(x,y),重心为C(x!,y!),
二阶行距:rowMoment = [∑(x- x!)*(x- x!)]/A
二阶列距:colMoment = [∑(y- y!)*(y- y!)]/A
A为点的个数。
由以上两个信息可以算出图形的圆度:circleDisgree = rowMoment /colMoment .如果图形的circleDisgree 越小于1,则它越趋向于长轴为y方向的椭圆。如果图形的circleDisgree 越大于1,则它越趋向于长轴为x方向的椭圆.如果图形的circleDisgree 越接近于1,则它越趋向于圆。
所以我们可以使用圆度这种几何矩,对其进行索引,实现快速过滤。 

 

转自:http://blog.youkuaiyun.com/zernike/article/details/1206607

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值