最小代价问题
Time Limit:1000MS Memory Limit:65536K
Total Submit:191 Accepted:69
Description
设有一个n×m(小于100)的方格(如图所示),在方格中去掉某些点,方格中的数字代表距离(为小于100的数,如果为0表示去掉的点),试找出一条从A(左上角)到B(右下角)的路径,经过的距离和为最小(此时称为最小代价),从A出发的方向只能向右,或者向下。
Input
Output
Sample Input
4 4
4 10 7 0
3 2 2 9
0 7 0 4
11 6 12 1
Sample Output
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)
24
var
f:array[0..1000,0..1000,1..2] of longint;
a:array[0..1000,0..1000] of longint;
i,n,m,k,j:longint;
x,y:longint;
procedure dg(x,y:longint);
begin
if (x<1) or (y<1) then exit;
if f[x,y,2]=1 then dg(x,y-1)
else dg(x-1,y);
if (x<>n) or (y<>m) then write('(',x,',',y,')->')
else write('(',x,',',y,')')
end;
begin
read(n,m);
for i:=1 to n do
begin
for j:=1 to m do
read(a[i,j]);
readln;
end;
f[1,1,1]:=a[1,1];
for i:=2 to n do
if (f[1,i-1,1]<>0) and (a[1,i]<>0)
then
begin
f[1,i,1]:=f[1,i-1,1]+a[1,i];
f[1,i,2]:=1;
end;
for i:=2 to n do
if (f[i-1,1,1]<>0) and (a[i,1]<>0)
then begin
f[i,1,1]:=f[i-1,1,1]+a[i,1];
f[i,1,2]:=2;
end;
for i:=2 to n do
for j:=2 to m do
if a[i,j]<>0 then
begin
if f[i-1,j,1]=0 then begin
f[i,j,1]:=a[i,j]+f[i,j-1,1];
f[i,j,2]:=1;
end
else
if f[i,j-1,1]=0 then begin
f[i,j,1]:=a[i,j]+f[i-1,j,1];
f[i,j,2]:=2;
end
else
if f[i-1,j,1]>f[i,j-1,1] then begin
f[i,j,1]:=a[i,j]+f[i,j-1,1];
f[i,j,2]:=1;
end
else begin
f[i,j,1]:=a[i,j]+f[i-1,j,1];
f[i,j,2]:=2;
end;
end;
// for i:=1 to n do
// begin
// for j:=1 to m do write(f[i,j,1],' ');
// writeln;
// end;
dg(n,m);
writeln;
write(f[n,m,1]-a[n,m]);
end.