HDU 4430 - Yukari's Birthday

This is a problem from HDU (Hangzhou Dianzi University) with the title 'Yukari's Birthday'. The challenge focuses on algorithmic problem-solving, likely involving time and memory constraints for program execution." 121682232,11692314,Python循环与range函数详解,"['python', '开发语言', 'pycharm']


Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5505    Accepted Submission(s): 1320


Problem Description
Today is Yukari's n-th birthday. Ran and Chen hold a celebration party for her. Now comes the most important part, birthday cake! But it's a big challenge for them to place n candles on the top of the cake. As Yukari has lived for such a long long time, though she herself insists that she is a 17-year-old girl.
To make the birthday cake look more beautiful, Ran and Chen decide to place them like r ≥ 1 concentric circles. They place ki candles equidistantly on the i-th circle, where k ≥ 2, 1 ≤ i ≤ r. And it's optional to place at most one candle at the center of the cake. In case that there are a lot of different pairs of r and k satisfying these restrictions, they want to minimize r × k. If there is still a tie, minimize r.
 

Input
There are about 10,000 test cases. Process to the end of file.
Each test consists of only an integer 18 ≤ n ≤ 1012.
 

Output
For each test case, output r and k.
 

Sample Input
18 111 1111
 

Sample Output
1 17 2 10 3 10

#include<cstdio>
#include <cmath>
typedef __int64 LL; 
LL int_pow(const LL x,const int n) 
{
	LL ans=1;
	for(int i=1;i<=n;i++) ans*=x;
	return ans;
}
LL find_k(int r,LL n)
{
	LL st=2,ed=pow(n,1.0/r),mid,sum; //注意上界取到n的r次方就够了,多了会溢出 
	while(st<=ed)
	{
		mid=st+(ed-st)/2;
		sum=mid*(1-int_pow(mid,r))/(1-mid); //计算r层蜡烛加起来总共多少根 
		if(sum > n) ed=mid-1;
		else if(sum < n) st=mid+1;
		else return mid;
	}
	return 0;
}
int main()
{
	LL n,r,k;
	while(scanf("%lld",&n)!=EOF)
	{
		r=1,k=n-1;
		for(int i=2;i<=50;i++) //对于接下来的每层,尝试是否能更新r、k
		{
			LL k1=find_k(i,n) , k2=find_k(i,n-1); //得到中心不插蜡烛的k,以及中间插一根蜡烛的k 
			if(k1 != 0){ //若是对i存在有中心不插蜡烛的k,尝试更新r,k 
				if(i * k1 == r * k && i < r) {
                    r = i; k = k1;
                }
				else if(i * k1 < r * k){
                    r = i; k = k1;
                }
			}
			if(k2 != 0){ //若是对i存在有中心插蜡烛的k,尝试更新r,k 
				if(i * k2 == r * k && i < r) {
                    r = i; k = k2;
                }
				else if(i * k2 < r * k){
                    r = i; k = k2;
                }
			}
		}
		printf("%I64d %I64d\n",r,k);
	}
}


内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值