刘汝佳的《算法竞赛入门经典》第五章中有高精度运算类 bign,如下:
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = 200;
struct bign{
int len, s[maxn];
bign() {
memset(s, 0, sizeof(s));
len = 1;
}
bign(int num) {
*this = num;
}
bign(const char* num) {
*this = num;
}
bign operator = (int num) {
char s[maxn];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char* num) {
len = strlen(num);
for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
string str() const {
string res = "";
for(int i = 0; i < len; i++) res = (char)(s[i] + '0') + res;
if(res == "") res = "0";
return res;
}
//高精度加法
bign operator + (const bign& b) const{
bign c;
c.len = 0;
for(int i = 0, g = 0; g || i < max(len, b.len); i++) {
int x = g;
if(i < len) x += s[i];
if(i < b.len) x += b.s[i];
c.s[c.len++] = x % 10;
g = x / 10;
}
return c;
}
//忽略前导0
void clean() {
while(len > 1 && !s[len-1]) len--;
}
//高精度乘法
bign operator * (const bign& b) {
bign c; c.len = len + b.len;
for(int i = 0; i < len; i++)
for(int j = 0; j < b.len; j++)
c.s[i+j] += s[i] * b.s[j];
for(int i = 0; i < c.len-1; i++){
c.s[i+1] += c.s[i] / 10;
c.s[i] %= 10;
}
c.clean();
return c;
}
//高精度减法
bign operator - (const bign& b) {
bign c; c.len = 0;
for(int i = 0, g = 0; i < len; i++) {
int x = s[i] - g;
if(i < b.len) x -= b.s[i];
if(x >= 0) g = 0;
else {
g = 1;
x += 10;
}
c.s[c.len++] = x;
}
c.clean();
return c;
}
//高精度除以低精度
bign operator / (int b) const{
assert(b > 0);
bign c;c.len = len;
for (int i = len-1, g = 0; i >= 0; --i){
int x = 10*g+s[i];
c.s[i] = x/b;
g = x-c.s[i]*b;
}
c.clean();
return c;
}
//高精度对低精度取余
bign operator % (int b){
assert(b > 0);
bign d = b;
bign c = *this-*this/b*d;
return c;
}
bool operator < (const bign& b) const{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator > (const bign& b) const{
return b < *this;
}
bool operator <= (const bign& b) {
return !(b > *this);
}
bool operator == (const bign& b) {
return !(b < *this) && !(*this < b);
}
bign operator += (const bign& b) {
*this = *this + b;
return *this;
}
};
istream& operator >> (istream &in, bign& x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign& x) {
out << x.str();
return out;
}
int main() {
bign a;
cin >> a;
a += "123456789123456789000000000";
cout << a*2 << endl;
return 0;
}
将上诉模板稍加修改,即可解决此题。
特别要注意的是:题目所描述的第一个数据有可能大于int的最大值231-1,所以用long long定义整型数据,预防溢出。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<climits>
#include<cassert>
using namespace std;
const int maxn=30000;
struct bign{
long long len, s[maxn];
bign() {
memset(s, 0, sizeof(s));
len = 1;
}
bign(long long num) {
*this = num;
}
bign(const char* num) {
*this = num;
}
bign operator = (long long num) {
char s[maxn];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char* num) {
len = strlen(num);
for(long long i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
string str() const {
string res = "";
for(long long i = 0; i < len; i++) res = (char)(s[i] + '0') + res;
if(res == "") res = "0";
return res;
}
bign operator + (const bign& b) const{
bign c;
c.len = 0;
for(long long i = 0, g = 0; g || i < max(len, b.len); i++) {
long long x = g;
if(i < len) x += s[i];
if(i < b.len) x += b.s[i];
c.s[c.len++] = x % 10;
g = x / 10;
}
return c;
}
void clean() {
while(len > 1 && !s[len-1]) len--;
}
bign operator * (const bign& b) {
bign c; c.len = len + b.len;
for(long long i = 0; i < len; i++)
for(long long j = 0; j < b.len; j++)
c.s[i+j] += s[i] * b.s[j];
for(long long i = 0; i < c.len-1; i++){
c.s[i+1] += c.s[i] / 10;
c.s[i] %= 10;
}
c.clean();
return c;
}
bign operator - (const bign& b) {
bign c; c.len = 0;
for(long long i = 0, g = 0; i < len; i++) {
long long x = s[i] - g;
if(i < b.len) x -= b.s[i];
if(x >= 0) g = 0;
else {
g = 1;
x += 10;
}
c.s[c.len++] = x;
}
c.clean();
return c;
}
bign operator / (long long b) const{
assert(b > 0);
bign c;c.len = len;
for (long long i = len-1, g = 0; i >= 0; --i){
long long x = 10*g+s[i];
c.s[i] = x/b;
g = x-c.s[i]*b;
}
c.clean();
return c;
}
bign operator % (long long b){
assert(b > 0);
bign d = b;
bign c = *this-*this/b*d;
return c;
}
bool operator < (const bign& b) const{
if(len != b.len) return len < b.len;
for(long long i = len-1; i >= 0; i--)
if(s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator > (const bign& b) const{
return b < *this;
}
bool operator <= (const bign& b) {
return !(b > *this);
}
bool operator == (const bign& b) {
return !(b < *this) && !(*this < b);
}
bign operator += (const bign& b) {
*this = *this + b;
return *this;
}
};
istream& operator >> (istream &in, bign& x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign& x) {
out << x.str();
return out;
}
int main()
{
bign a;
char b;
long long c;
while (cin>>a>>b>>c){
if (b=='/')
cout<<a/c<<endl;
else
cout<<a%c<<endl;
}
return 0;
}
还可以参考这个AC代码,很是精辟哦(没有用到bign类): 点击打开链接
--------------------------------------------------------------------------------------------
Keep It Simple,Stupid!
--------------------------------------------------------------------------------------------