机器学习2 机器学习误差分析与代表性算法
1. 误差分析
(1)误差公式
数据集上需要预测的样本为Y,特征为X,潜在模型为 Y = f ( X ) + ε Y=f(X)+ε Y=f(X)+ε,其中 ε ∼ N ( 0 , σ ε ) ε \sim N(0,σ_ε) ε∼N(0,σε)是噪声, 估计的模型为 f ^ ( X ) \hat{f}(X) f^(X). Err ( f ^ ) = E [ ( Y − f ^ ( X ) ) 2 ] Err ( f ^ ) = E [ ( f ( X ) + ε − f ^ ( X ) ) 2 ] Err ( f ^ ) = E [ ( f ( X ) − f ^ ( X ) ) 2 + 2 ε ( f ( X ) − f ^ ( X ) ) + ε 2 ] Err ( f ^ ) = E [ ( E ( f ^ ( X ) ) − f ( X ) + f ^ ( X ) − E ( f ^ ( X ) ) ) 2 ] + σ ε 2 Err ( f ^ ) = E [ ( E ( f ^ ( X ) ) − f ( X ) ) ] 2 + E [ ( f ^ ( X ) − E ( f ^ ( X ) ) ) 2 ] + σ ε 2 Err ( f ^ ) = Bias 2 ( f ^ ) + Var ( f ^ ) + σ ε 2 \begin{array}{l}\operatorname{Err}(\hat{f})=\mathrm{E}\left[(Y-\hat{f}(\mathrm{X}))^{2}\right] \ \operatorname{Err}(\hat{f})=\mathrm{E}\left[(f(X)+\varepsilon-\hat{f}(\mathrm{X}))^{2}\right] \ \operatorname{Err}(\hat{f})=\mathrm{E}\left[(f(X)-\hat{f}(\mathrm{X}))^{2}+2 \varepsilon(f(X)-\hat{f}(\mathrm{X}))+\varepsilon^{2}\right] \ \operatorname{Err}(\hat{f})=\mathrm{E}\left[(E(\hat{f}(\mathrm{X}))-f(X)+\hat{f}(\mathrm{X})-E(\hat{f}(\mathrm{X})))^{2}\right]+\sigma_{\varepsilon}^{2} \ \operatorname{Err}(\hat{f})=\mathrm{E}[(E(\hat{f}(\mathrm{X}))-f(X))]^{2}+\mathrm{E}\left[(\hat{f}(\mathrm{X})-E(\hat{f}(\mathrm{X})))^{2}\right]+\sigma_{\varepsilon}^{2} \ \operatorname{Err}(\hat{f})=\operatorname{Bias}^{2}(\hat{f})+\operatorname{Var}(\hat{f})+\sigma_{\varepsilon}^{2}\end{array} Err(f^)=E[(Y−f^(X))2] Err(f^)=E

本文深入解析了机器学习中的误差分析方法,包括偏差、方差的概念及其与欠拟合、过拟合的关系,并介绍了逻辑回归、随机森林和支持向量机等代表性监督学习算法,以及K-means等无监督学习算法。
最低0.47元/天 解锁文章
10万+

被折叠的 条评论
为什么被折叠?



