集成学习Day6 sklearn分类模型的评估、优化与基于SVM的人脸分类实例

集成学习Day6 sklearn分类模型的评估、优化与人脸分类实例

1. 模型评估与优化

(1)超参数选择

A 使用网格搜索选择超参数
from sklearn import datasets
import pandas as pd 
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC 
import time 

iris = datasets.load_iris()
X = iris.data  
y = iris.target  
feature = iris.feature_names

start_time = time.time()
pipe_svc = make_pipeline(StandardScaler(), SVC(random_state=1))
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{
   
   'svc__C':param_range, 'svc__kernel':['linear']}, \
    {
   
   'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
gs = GridSearchCV(estimator=pipe_svc, param_grid=param_grid, scoring='accuracy', cv=10, n_jobs=-1)
gs.fit(X, y)
end_time = time.time()
print("网格搜索经历的时间为: %.3f S" %float(end_time - start_time))
print(gs.best_score_)
print(gs.best_params_)

在这里插入图片描述

B 使用随机搜索选择超参数
from sklearn import datasets
import pandas as pd 
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC 
import time 

iris = datasets.load_iris()
X = iris.data  
y = iris.target  
feature = iris.feature_names

start_time = time.time()
pipe_svc = make_pipeline(StandardScaler(), SVC(random_state=1))
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{
   
   'svc__C':param_range,'svc__kernel':['linear']},\
    {
   
   'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
gs = RandomizedSearchCV(estimator=pipe_svc, param_distributions=param_grid, scoring='accuracy',cv=10, n_jobs=-1)
gs = gs.fit(X,y)
end_time = time.time()
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值