spark mllib算法思想总结

本文总结了Spark 2.1.0版本中的MLlib和ml包中的算法,包括监督学习、无监督学习,如分类、回归、聚类、评估、特征提取等。mllib包基于RDD,ml包基于DataFrame,未来Spark将移除mllib,全面转向ml包的DataFrame类型算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark MLlib全部算法总结(2.1.0版)

说明:总结算法为Spark2.1.0中Mllib中源码算法,参照网络链接及书籍整理而成。

算法按计算过程分两大类:监督学习(Supervised Learning)和无监督学习(Unsupervised Learning)。

监督学习:指给定算法的一个数据集,其中包含了“正确答案”。算法的目的就是给出更多的“正确答案”。

无监督学习:指给定算法的一个数据集,要求算法找出数据的类型结构,即“分门别类”。按基于数据类型不同又分为两个包:ml包和mllib包。

mllib包内算法是基于Spark的核心RDD(弹性分布式数据集)类型数据的。

ml包内算法是基于更为抽象数据类型DataFrame(数据流)的。

ml、mllib包内按功能类型分又分为多种类型,包括分类(classification)、聚类(clustering)、特征(feature)、优化(optimi/optimization)、推荐(recommendation)、回归(regression)、评估(evaluation)等多种类型。

注:Spark从2.0版本开始,不再向mllib包中添加新的算法,并逐渐将mllib包中算法向ml包中过渡,预计3.0版本将会移除mllib包,统一ml包内基于DataFrame类型的算法。

1 mllib包内算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值