Co-prime Array

给定一个数组,你需要通过最少的操作次数将其变为互质数组。每步操作可以向数组中任意位置插入不超过10^9的正整数。数组互质意味着其任意相邻两个数互质。题目要求输出最小插入次数及其后的互质数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Co-prime Array
Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

You are given an array of n elements, you must make it a co-prime array in as few moves as possible.

In each move you can insert any positive integral number you want not greater than 109 in any place in the array.

An array is co-prime if any two adjacent numbers of it are co-prime.

In the number theory, two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.

Input

The first line contains integer n (1 ≤ n ≤ 1000) — the number of elements in the given array.

The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

Output

Print integer k on the first line — the least number of elements needed to add to the array a to make it co-prime.

The second line should contain n + k integers aj — the elements of the array a after adding k elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array a by addingk elements to it.

If there are multiple answers you can print any one of them.

Sample Input

Input
3
2 7 28
Output
1
2 7 9 28
 
        
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int GCD(int a,int b)
{
	if(b==0)
	return a;
	else
	return GCD(b,a%b);
}
int main()
{
	int  n,a[1010],k=0;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	for(int i=1;i<n;i++)
	{
		if(GCD(a[i],a[i+1])!=1)
		k++;
	}
	printf("%d\n",k);
	for(int i=1;i<n;i++)
	{
		printf("%d ",a[i]);
		if(GCD(a[i],a[i+1])!=1)
		printf("1 ");
	}
	printf("%d\n",a[n]);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值