#include <functional>
#include <future>
#include <iostream>
#include <mutex>
#include <queue>
#include <vector>
class ThreadPool {
public:
struct Task {
Task() {}
Task(const uint32_t &p, const std::function<void()> &f): priority(p), func(f) {}
uint32_t priority;
std::function<void()> func;
bool operator<(const Task &other) const {
return priority < other.priority;
}
};
ThreadPool(size_t threads) : stop(false) {
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this]() {
while (true) {
Task task;
{
std::unique_lock<std::mutex> lock(queue_mutex);
condition.wait(lock, [this] { return stop || !tasks.empty(); });
if (stop && tasks.empty())
return;
task = std::move(tasks.top());
tasks.pop();
}
task.func();
}
});
}
}
template <class F, class... Args>
auto AddTask(const uint32_t priority, F &&f, Args &&...args) -> std::future<decltype(f(args...))> {
using return_type = decltype(f(args...));
auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(std::forward<F>(f), std::forward<Args>(args)...));
auto res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
if (!stop) {
tasks.emplace(priority, [task]() { (*task)(); });
}
}
condition.notify_one();
return res;
}
~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread &worker : workers) {
worker.join();
}
}
private:
std::vector<std::thread> workers;
std::priority_queue<Task> tasks;
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
C++线程池(支持任意类型函数,支持优先级)
最新推荐文章于 2024-10-25 13:57:50 发布