动态规划:连续子数组的最大和

解答过程:

使用动态规划

F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变

F(i)=max(F(i-1)+array[i] , array[i])

res:所有子数组的和的最大值

res=max(res,F(i))

 

如数组[6, -3, -2, 7, -15, 1, 2, 2]

初始状态:

    F(0)=6

    res=6

i=1:

    F(1)=max(F(0)-3,-3)=max(6-3,-3)=3

    res=max(F(1),res)=max(3,6)=6

i=2:

    F(2)=max(F(1)-2,-2)=max(3-2,-2)=1

    res=max(F(2),res)=max(1,6)=6

i=3:

    F(3)=max(F(2)+7,7)=max(1+7,7)=8

    res=max(F(3),res)=max(8,6)=8

i=4:

    F(4)=max(F(3)-15,-15)=max(8-15,-15)=-7

    res=max(F(4),res)=max(-7,8)=8

以此类推

最终res的值为8

 

代码很简洁:

 

public  int FindGreatestSumOfSubArray(int[] array) {

        int res = array[0]; //记录当前所有子数组的和的最大值

        int max=array[0];   //包含array[i]的连续数组最大值

        for (int i = 1; i < array.length; i++) {

            max=Math.max(max+array[i], array[i]);

            res=Math.max(max, res);

        }

        return res;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值