AVL树平衡原理与实现详解

目录

1. AVL的概念

2. AVL树的实现

2.1 AVL树的结构

2.2 AVL树的插⼊

2.2.1 AVL树插⼊⼀个值的⼤概过程

2.2.2 平衡因⼦更新

更新原则:

更新停⽌条件:

2.3 旋转

2.3.1 旋转的原则

2.3.2 右单旋

2.3.3 右单旋代码实现

   2.3.4 左单旋

2.3.5 左单旋代码实现

2.3.6 左右双旋

2.3.7 左右双旋代码实现

2.3.8 右左双旋

2.3.9 右左双旋代码实现

2.4 AVL树的查找

2.5 AVL树平衡检测

2.6 完整测试代码

test.cpp

AVLTree.h

1. AVL的概念

• AVL树是最先发明的⾃ 平衡⼆叉查找树 ,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的 左右⼦树都是AVL树,且 左右⼦树的⾼度差的绝对值不超过1 。AVL树是⼀颗⾼度平衡搜索⼆叉树, 通过控制⾼度差去控制平衡。
• AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962 年的论⽂《An algorithm for the organization of information》中发表了它。
• AVL树实现这⾥我们引⼊⼀个 平衡因⼦(balance factor) 的概念,每个结点都有⼀个平衡因⼦,任何 结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1, AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡, 就像⼀个⻛向标⼀样。
• 思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法做到⾼度差是0。
• AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 logN ,那么增删查改的效率也可
以控制在 O(logN) ,相⽐⼆叉搜索树有了本质的提升。

2. AVL树的实现

2.1 AVL树的结构

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K,V>*   _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr),
		_right(nullptr),
		_parent(nullptr),
		_bf(0),
		_kv(kv)
	{

	}
};

2.2 AVL树的插⼊

2.2.1 AVL树插⼊⼀个值的⼤概过程

1. 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊
2. 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可以停⽌了,具体情况我们下⾯再详细分析。
3. 更新平衡因⼦过程中没有出现问题,则插⼊结束。
4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

2.2.2 平衡因⼦更新

更新原则:
• 平衡因⼦ = 右⼦树⾼度-左⼦树⾼度
• 只有⼦树⾼度变化才会影响当前结点平衡因⼦。
• 插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在
parent的左⼦树,parent平衡因⼦--
• parent所在⼦树的⾼度是否变化决定了是否会继续往上更新。
更新停⽌条件:
更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0 或者 1->0,说明更新前
parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会
影响parent的⽗亲结点的平衡因⼦,更新结束
更新后parent的平衡因⼦等于1 或 -1,更新前更新中parent的平衡因⼦变化为0->1 或者 0->-1,说 明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所 在的⼦树符合平衡要求,但是⾼度增加了1,会影响parent的⽗亲结点的平衡因⼦,所以要继续向上更新
更新后parent的平衡因⼦等于2 或 -2,更新前更新中parent的平衡因⼦变化为1->2 或者 -1->-2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,使得parent所在的⼦树⾼的那边更⾼了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把 parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不需要继续往上更新,插⼊结束。
• 不断更新,更新到根,根的平衡因⼦是1或-1也停⽌了。
bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			//不支持插入相同的值
			return flase;
		}
	}
	cur = new Node(kv);
	if (parent->kv.first > kv.first)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}

	// 链接父亲
	cur->_parent = parent;

	//更新parent的_bf
	while (parent)
	{
		if (cur == parent_left)
		{
			parent->_bf--;
		}
		else
		{
			parent->_bf++;
		}

		if (parent->_bf == 0)
		{
			break;
		}
		//继续更新
		else if (_parent->_bf == 1 || parent->_bf == -1)
		{
			cur = parent;
			parent = parent->_parent;
		}
		else if (_parent->_bf == 2 || parent->_bf == -2)
		{
			// 旋转
			break;
		}
		else
		{
			assert(false);
		}
	}
	return true;
}

2.3 旋转

2.3.1 旋转的原则

1. 保持搜索树的规则
2. 让旋转的树从不满⾜平衡条件到变平衡,其次降低旋转树的⾼度,旋转总共分为四种, 左单旋/右单旋/左右双旋/右左双旋

2.3.2 右单旋

•图1展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要
求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,
是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/
图5进⾏了详细描述。
• 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平
衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要
往右边旋转,控制两棵树的平衡。(太高了就要把它压下去)
旋转核⼼步骤,因为5 < b⼦树的值 < 10,将b变成10的左⼦树,10变成5的右⼦树 ,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原 则。如果插⼊之前10是整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

2.3.3 右单旋代码实现

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
        //除了要修改孩子指针的指向,还要修改父亲
		parent->_left = subLR;
		if(subLR)
			subLR->_parent = parent;
        //parent有可能是整棵树的根,有可能是局部的子树
        //需要记录爷爷的位置
		Node* pParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;
        //如果是整棵树的根,要修改_root
        //如果是局部的指针要与上一层链接
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pParent->_left == parent)
			{
				pParent->_left = subL;
			}
			else
			{
				pParent->_right = subL;
			}

			subL->_parent = pParent;
		}
        //修改bf
		subL->_bf = 0;
		parent->_bf = 0;
	}

   2.3.4 左单旋

本图6展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要
求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,
是⼀种概括抽象表⽰,他代表了所有左单旋的场景,实际左单旋形态有很多种,具体跟上⾯右旋类
似。
在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平
衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往
左边旋转,控制两棵树的平衡。(往左边压)
旋转核⼼步骤,因为10 < b⼦树的值 < 15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵 树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

2.3.5 左单旋代码实现

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}

2.3.6 左右双旋

通过图7和图8可以看到,左边⾼时,如果插⼊位置不是在a⼦树,⽽是插⼊在b⼦树,b⼦树⾼度从h变成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树这棵树就平衡了。

图7和图8分别为左右双旋中h==0和h==1具体场景分析,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL
⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为8和左⼦树⾼度为h-1的e和f⼦树,因为
我们要对b的⽗亲5为旋转点进⾏左单旋,左单旋需要动b树中的左⼦树。b⼦树中新增结点的位置
不同,平衡因⼦更新的细节也不同,通过观察8的平衡因⼦不同,这⾥我们要分三个场景讨论
场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1并为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为-1,旋转后8和5平衡因⼦为0,10平衡因⼦为1。
场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为1,旋转后8和10平衡因⼦为0,5平衡因⼦为-1。
场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因⼦,引发旋
转,其中8的平衡因⼦为0,旋转后8和10和5平衡因⼦均为0。

2.3.7 左右双旋代码实现

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;

	RotateL(parent->_left);
	RotateR(parent);
	//更新bf
	//e子树新增 左边的
	if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	//f子树新增 右边的
	else if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

2.3.8 右左双旋

跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。
场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因
⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。
场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦, 引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。
场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋
转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。

2.3.9 右左双旋代码实现

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;
	RotateR(parent->_right);
	RotateL(parent);
	if (bf == 0)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == 1)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		subR->_bf = 1;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

2.4 AVL树的查找

按照⼆叉搜索树逻辑实现即可,搜索效率为 O(logN)。

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			cur = cur->_right;
		}
		else if (cur->_kv.first > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}

	return nullptr;
}

2.5 AVL树平衡检测

我们实现的AVL树是否合格,我们通过 检查左右⼦树⾼度差 的的程序进⾏反向验证,同时检查⼀下结点的平衡因⼦更新是否出现了问题。
int _Height(Node* root)
{
	if (root == nullptr)
		return 0;
	int leftHeight = _Height(root->_left);
	int rightHeight = _Height(root->_right);
	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
	// 空树也是AVL树
	if (nullptr == root)
		return true;
	// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(root->_left);
	int rightHeight = _Height(root->_right);
	int diff = rightHeight - leftHeight;

	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (abs(diff) >= 2)
	{
		cout << root->_kv.first << "高度差异常" << endl;
		return false;
	}

	if (root->_bf != diff)
	{
		cout << root->_kv.first << "平衡因子异常" << endl;
		return false;
	}

	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}

2.6 完整测试代码

test.cpp

#define _CRT_SECURE_NO_WARNINGS 1
#include<vector>
#include"AVLTree.h"

void TestAVLTree1()
{
	AVLTree<int, int> t;
	// 常规的测试用例
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	// 特殊的带有双旋场景的测试用例
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };

	for (auto e : a)
	{
		t.Insert({ e, e });
	}

	t.InOrder();
	cout << t.IsBalanceTree() << endl;
}

// 插入一堆随机值,测试平衡,顺便测试一下高度和性能等
void TestAVLTree2()
{
	const int N = 1000000;
	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; i++)
	{
		v.push_back(rand() + i);
	}

	size_t begin2 = clock();
	AVLTree<int, int> t;
	for (auto e : v)
	{
		t.Insert(make_pair(e, e));
	}
	size_t end2 = clock();

	cout << "Insert:" << end2 - begin2 << endl;
	cout << t.IsBalanceTree() << endl;

	cout << "Height:" << t.Height() << endl;
	cout << "Size:" << t.Size() << endl;

	size_t begin1 = clock();
	// 确定在的值
	for (auto e : v)
	{
		t.Find(e);
	}
	// 随机值
	/*for (size_t i = 0; i < N; i++)
	{
		t.Find((rand() + i));
	}*/
	size_t end1 = clock();
	cout << "Find:" << end1 - begin1 << endl;
}


int main()
{
	TestAVLTree2();

	return 0;
}

AVLTree.h

#pragma once

#include<iostream>
#include<assert.h>
using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	// 需要parent指针,后续更新平衡因子可以看到
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf; // balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		// 链接父亲
		cur->_parent = parent;

		// 控制平衡
		// 更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}

				break;
			}
			else
			{
				assert(false);
			}
		}


		return true;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* pParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pParent->_left == parent)
			{
				pParent->_left = subL;
			}
			else
			{
				pParent->_right = subL;
			}

			subL->_parent = pParent;
		}

		subL->_bf = 0;
		parent->_bf = 0;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			//别忘了链接
			subR->_parent = parentParent;
		}

		parent->_bf = subR->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		//更新bf
		//e子树新增 左边的
		if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		//f子树新增 右边的
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 0)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	int _Size(Node* root)
	{
		if (root == nullptr)
			return 0;

		return _Size(root->_left) + _Size(root->_right) + 1;
	}

	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;
		// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;

		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "高度差异常" << endl;
			return false;
		}

		if (root->_bf != diff)
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}
private:
	Node* _root = nullptr;
};

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值