https://vjudge.net/problem/HDU-6356
题意:数组有n个数初始为0,m个询问,每个询问给出L R V(按照给定函数生成),将数组的下标L到R的数与V取较大值,最后输出给定的公式结果。
思路:目前知道的做法有三种,线段树(维护最大值最小值剪枝)、倍增维护区间更新、据说2e5可以覆盖整个随机数所以用nth_element晒出前2e5大的数。
1、线段树剪枝
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const unsigned int MOD= 1<<30;
const unsigned int MAXN=3*5e6+10;
const int MAXM=1e5+10;
const int INF=0x3f3f3f3f;
unsigned int F[MAXN];
unsigned int L[MAXN],R[MAXN],V[MAXN];
unsigned int a[MAXN];
unsigned int X,Y,Z;
unsigned int RNG61()
{
X=X^(X<<11);
X=X^(X>>4);
X=X^(X<<5);
X=X^(X>>14);
unsigned int W;
W=X^Y^Z;
X=Y;
Y=Z;
Z=W;
return Z;
}
//建立区间更新线段树,维护最大值和最小值
struct Node
{
int l,r;
unsigned int Min,Max,lazy;
}node[MAXM<<2];
void PushUp(int rt)
{
node[rt].Min=min(node[rt<<1].Min,node[rt<<1|1].Min);
node[rt].Max=max(node[rt<<1].Max,node[rt<<1|1].Max);
}
void PushDown(int rt)
{
if(node[rt].lazy)
{
node[rt<<1].lazy=node[rt].lazy;
node[rt<<1|1].lazy=node[rt].lazy;
node[rt<<1].Min=node[rt].lazy;
node[rt<<1|1].Min=node[rt].lazy;
node[rt<<1].Max=node[rt].lazy;
node[rt<<1|1].Max=node[rt].lazy;
node[rt].lazy=0;
}
}
void build(int l,int r,int rt)
{
node[rt].lazy=0;
node[rt].Max=0;
node[rt].Min=0;
node[rt].l=l;
node[rt].r=r;
if(l==r)
{
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
PushUp(rt);
}
//区间更新
void update(int L,int R,int c,int l,int r,int rt=1)
{
// 如果区间最小值大于vi则截断剪枝
if(node[rt].Min>=c)
return;
if(L<=l&&r<=R)
{
if(node[rt].Max<c)
{
node[rt].lazy=c;
node[rt].Max=c;
node[rt].Min=c;
return;
}
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m)update(L,R,c,lson);
if(m<R)update(L,R,c,rson);
PushUp(rt);
}
void query(int L,int R,int l,int r,int rt=1)
{
if(node[rt].Max==node[rt].Min)
{
for(int i=node[rt].l;i<=node[rt].r;i++)
{
a[i]=node[rt].Max;
}
return;
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m)
query(L,R,lson);
if(R>m)
query(L,R,rson);
}
int main()
{
unsigned int n,m;
int t;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
scanf("%d%d%d%d%d",&n,&m,&X,&Y,&Z);
for(int i=1;i<=3*m;i++)
{
F[i]=RNG61();
// cout<<F[i]<<" ";
}
// cout<<endl;
build(1,n,1);
for(int i=1;i<=m;i++)
{
L[i]=min(F[3*i-2]%n+1,F[3*i-1]%n+1);
R[i]=max(F[3*i-2]%n+1,F[3*i-1]%n+1);
V[i]=F[3*i]%MOD;
// cout<<L[i]<<" "<<R[i]<<" "<<V[i]<<endl;
update(L[i],R[i],V[i],1,n,1);
}
// for(int i=1;i<=n;i++)
// cout<<a[i]<<" ";
// cout<<endl;
ll sum=0;
query(1,n,1,n,1);
for(int i=1;i<=n;i++)
sum=sum^((ll)i*(ll)a[i]);
cout<<sum<<endl;
}
return 0;
}
2. 倍增思想
a[i][j]表示以i为开始位置,长度为j的区间
# include <bits/stdc++.h>
# define lson l,mid,id<<1
# define rson mid+1,r,id<<1|1
using namespace std;
typedef long long LL;
typedef unsigned int ui;
const int maxn = (5e6+30)*3;
ui x, y, z, a[100003][18], b[maxn];
int lg[100003]={0};
ui fun()
{
x = x^(x<<11);
x = x^(x>>4);
x = x^(x<<5);
x = x^(x>>14);
ui w = x^(y^z);
x = y;
y = z;
z = w;
return z;
}
int main()
{
int T, n, m;
for(int i=2; i<=100000; ++i) lg[i] = lg[i>>1]+1;
for(scanf("%d",&T); T; --T)
{
scanf("%d%d%u%u%u",&n,&m,&x,&y,&z);
int mx = max(n, 3*m), imax=0;
memset(a, 0, sizeof(a));
for(int i=1; i<=mx; ++i)
b[i] = fun();
for(int i=1; i<=m; ++i)
{
int l = min(b[3*i-2]%n+1, b[3*i-1]%n+1);
int r = max(b[3*i-2]%n+1, b[3*i-1]%n+1);
ui vi = b[3*i]%(1<<30);
int d = lg[r-l+1];
r = r+1-(1<<d);
a[l][d] = max(a[l][d], vi);
a[r][d] = max(a[r][d], vi);
imax = max(imax, d);
}
for(int i=imax; i>=1; --i)
{
for(int j=1, d=1<<i; j<=n; ++j)
{
if(j+d-1>n) break;
a[j][i-1] = max(a[j][i-1], a[j][i]);
a[j+(d>>1)][i-1] = max(a[j+(d>>1)][i-1], a[j][i]);
}
}
LL ans = 0;
for(int i=1; i<=n; ++i)
ans ^= 1LL*i*a[i][0];
printf("%lld\n",ans);
}
return 0;
}