用kd树的最近邻搜索

本文介绍了使用kd树进行最近邻搜索的算法过程。首先从根节点开始,根据目标点坐标决定遍历左子节点还是右子节点,直到找到包含目标点的叶节点。然后以该叶节点作为初始最近点,递归回溯,检查每个节点及其子节点是否可能有更近的点。在回溯过程中,不断更新最近点,并判断未访问的子节点区域是否与超球体相交,如果相交则继续搜索,否则回退。最后返回的‘当前最近点’即为目标点的最近邻。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法:

输入:已构造的 kd 树;目标点 x ;
输出:x 的最近邻。
(1) 在 kd 树中找出包含目标点 x 的叶节点:从根节点出发,递归地向下访问 kd 树。若目标点 x 当前维的坐标小于切分点的坐标,则移动到左子节点,否则移动到右子节点。直到子节点为叶节点为止。
(2) 以此叶节点为“当前最近点”。
(3) 递归地向上回退,在每个节点进行以下操作:
(a) 如果该节点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”。
(b) 当前最近点一定存在于该节点一个子节点对应的区域。检查该子节点的父节点的另一子节点对应的区域是否有更近的点。具体地,检查另一子节点对应的区域是否与以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。
如果相交,可能在另一个子节点对应的区域内存在距目标点更近的点,移动到另一子节点。接着,递归地进行最近邻搜索;
如果不想交,向上回退。
(4) 当回退到根节点时,搜索结束。最后的“当前最近点”即为 x 的最近邻点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值