数字在排序数组中出现的次数

这是一道来自剑指offer的题目,要求统计一个数字在有序数组中出现的次数。通过二分查找算法进行解决,注意在中间值等于目标值时,需对数组两侧分别进行二分递归查找,以避免数组特殊情况导致错误。代码实现已给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指offer中的题目


题目描述
统计一个数字在排序数组中出现的次数。


看到有序数组,可能很多人都直接想到了要使用二分查找的方法,实际上确实是使用二分查找,但是需要稍微的修改一下,中间索引对应的元素等于目标元素的情况。(这里将二分数组中间索引对应的元素值,简称为中间值)
一般二分法,如果中间值大于目标值,则目标值在数组的右半部分;如果中间值小于目标值,则目标值在数组的左半部分;如果中间值等于目标值,则直接返回中间值的索引
这也是这道题最大的陷阱,可能会有如下数组样本,

[1,2,3,3,3,3,4,5,7]

所以在遇到中间等于目标值的情况的时候,需要对数组的左右两边的部分都进行二分递归查找,而不是返回或者只查找数组左边和右边部分中的一个。

下面是代码

public class solution {

    public static int GetNumberOfK(int[] array , int k) {
        if(array.length == 0 || array == null){
            return 0;
        }else if(array.length == 1 && array[0] == k){
            return 1;
        }
        return GetNumberOfKSupport(array, 0, array.length-1, k);
    }

    private static int GetNumberOfKSupport(int[] array, int start, int end, int k){
        if(start == end){
            return 0;
        }/*else if(start == end && array[start] == k){
            return 1;
        }*/

        int mid = start + (end - start) / 2;
        int leftCount = 0;
        int rightCount = 0;
        if(array[mid] == k){
            leftCount = GetNumberOfKSupport(array, start, mid, k);
            rightCount = GetNumberOfKSupport(array, mid + 1, end, k);
        }else if(array[mid] > k){  //在数组的左边
            leftCount = GetNumberOfKSupport(array, start, mid, k);
        }else{ // array[mid] < k //在数组的右边
            rightCount = GetNumberOfKSupport(array, mid + 1, end , k);
        }

        int count = 0;
        for(int i = start; i <= end; i++){
            if(array[i] == k){
                count++;
            }
            array[i] = k+1;
        }

        return count + leftCount + rightCount;
    }

    public static void main(String[] args) {
        int[] array = {3,3,3,3,3,3};
        int k = 3;
        int number = GetNumberOfK(array, k);
        System.out.println(number);
    }
}

结果显示

6
<think>好的,我现在需要帮助用户找到力扣上关于“数组中出现次数超过一半的数字”的相关题目。首先,根据用户提供的引用内容,特别是引用[1]到[5],可以看出用户主要关注的是剑指 Offer 39题,也就是多数元素问题。用户可能希望了解这道题的具体内容、解题思路以及相关方法。 首先,我需要确认用户提到的题目在力扣上的具体编号和名称。根据引用[1]、[2]、[3]、[4]和[5],都指向了同一道题:剑指 Offer 39. 数组中出现次数超过一半的数字。因此,我应该首先明确这道题的基本要求和示例。 接下来,用户可能需要了解不同的解题方法,比如哈希表统计法、排序法、摩尔投票法等。根据引用[3]和[4]提到的摩尔投票法,这种方法的时间复杂度是O(n),空间复杂度是O(1),是一个高效的解法。需要详细解释摩尔投票法的原理,比如票数正负抵消的机制,以及如何通过遍历数组找到众数。 然后,用户可能需要了解其他相关题目,比如力扣中的第169题“多数元素”,这与剑指Offer 39题类似,但可能有不同的输入条件或变种问题。此外,用户可能对类似的问题感兴趣,比如“求众数II”(第229题),需要找出出现次数超过n/3次的元素,这可以扩展用户的理解。 在整理回答时,需要确保符合用户给出的系统级指令,例如所有数学表达式用$...$格式,独立公式用$$...$$,并且正确使用中文。同时,生成相关问题时要考虑用户可能的后续疑问,比如不同解法的比较、时间空间复杂度分析、实际应用场景等。 需要验证引用的正确性,确保引用的内容与对应的题目一致。例如,引用[3]提到的推论二关于票数和的抵消机制,这确实是摩尔投票法的核心思想,需要正确引用。同时,代码示例需要符合用户提供的Python语法,并确保正确性。 最后,生成的相关问题需要覆盖用户可能感兴趣的方向,如其他相关题目、优化方法、实际应用等,确保问题具有引导性,帮助用户深入理解该算法题的不同方面。</think>### 数组中出现次数超过一半的数字(剑指 Offer 39) #### 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。假设数组非空且总存在多数元素。 示例: 输入:`[1,2,3,2,2,2,5,4,2]` 输出:`2`(出现5次,数组长度9) --- #### 核心思路 1. **摩尔投票法** 通过**票数正负抵消**的思想,假设众数(出现次数超半数的数)的票数为$+1$,非众数的票数为$-1$。由于众数数量占优,最终剩余的数字必为众数[^3][^4]。 **步骤**: - 初始化候选值`x`和票数`votes` - 遍历数组:若票数为0,更新候选值为当前元素;否则根据当前元素是否等于候选值增减票数 - 最终候选值即为众数 ```python def majorityElement(nums): votes, x = 0, None for num in nums: if votes == 0: x = num votes += 1 if num == x else -1 return x ``` 2. **其他解法** - **哈希统计法**:统计频率,时间复杂度$O(n)$,空间复杂度$O(n)$ - **排序法**:排序后取中间值,时间复杂度$O(n \log n)$,空间复杂度$O(1)$ --- #### 相关题目 1. **力扣169. 多数元素** 与本题完全相同,可用相同解法[^2][^5]。 2. **力扣229. 求众数II** 扩展问题:找出所有出现次数超过$\lfloor n/3 \rfloor$次的元素,需结合摩尔投票法改进[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值