1/0和1.0/0除零错

搞IT的每个人都知道,0是不能作为除数的,这是操作系统在底层就存在一个除零中断,所以绝大多数高级编程语言(至少是我知道的C、C++、Java等)都是不允许除零的。

但是请看下面这两段代码

 

/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		 System.out.println(1/0);
	}

 就会产生常见的运行时异常

java.lang.ArithmeticException: / by zero

异常

但是下面的代码

 

/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		 System.out.println(1.0/0);
	}

 却没有异常抛出,而是输出Infinity。

为什么?

这是因为Java在处理表达式计算时,默认对整数型0转型成0.0,而浮点数在计算机内是无法绝对精确的表示的,因此这个0.0在计算机内部只是一个接近0的极小浮点值而已,所以很容易的可以想出为什么输出Infinity。

同样的取模运算%也存在这个问题。

这是前两天在温习Java基础知识,看《疯狂Java讲义》时看到的,留作备忘。

同时通过Python语言的实验,发现Python只要是除零都会报错ZeroDivisionError,不论是int 0还是float 0

#include <stdio.h> #include <stdlib.h> #include <math.h> #include <time.h> #include <string.h> // BCH(7,4)编码参数 #define N_BCH 7 #define K_BCH 4 #define T_BCH 1 // 纠能力 // 高斯随机数生成器(Box-Muller变换) double gaussrand(double mean, double stddev) { static double V1, V2, S; static int phase = 0; double X; if (phase == 0) { do { double U1 = (double)rand() / RAND_MAX; double U2 = (double)rand() / RAND_MAX; V1 = 2.0 * U1 - 1.0; V2 = 2.0 * U2 - 1.0; S = V1 * V1 + V2 * V2; } while (S >= 1.0 || S == 0.0); X = V1 * sqrt(-2.0 * log(S) / S); } else { X = V2 * sqrt(-2.0 * log(S) / S); } phase = 1 - phase; return mean + X * stddev; } // BCH(7,4)编码函数 void bch_encode(const int* input, int* output, int num_blocks) { // 生成矩阵 (系统形式) int G[K_BCH][N_BCH] = { {1, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 1, 1, 1} }; for (int i = 0; i < num_blocks; i++) { for (int j = 0; j < N_BCH; j++) { output[i * N_BCH + j] = 0; for (int k = 0; k < K_BCH; k++) { output[i * N_BCH + j] ^= input[i * K_BCH + k] * G[k][j]; } } } } // BCH(7,4)解码函数(带纠) void bch_decode(const int* input, int* output, int num_blocks) { // 校验矩阵 int H[3][7] = { {1, 1, 0, 1, 1, 0, 0}, // 对应位置:0,1,3,4 {1, 0, 1, 1, 0, 1, 0}, // 对应位置:0,2,3,5 {0, 1, 1, 1, 0, 0, 1} // 对应位置:1,2,3,6 }; // 校正子到误位置的映射(修正后的) // 索引 = s0*4 + s1*2 + s2 int error_pattern[8] = { -1, 6, 5, 2, 4, 1, 0, 3 }; // -1: 无误 // 0: 位置0误 // 1: 位置1误 // 2: 位置2误 // 3: 位置3误 // 4: 位置4误 // 5: 位置5误 // 6: 位置6误 for (int i = 0; i < num_blocks; i++) { int received[N_BCH]; memcpy(received, &input[i * N_BCH], N_BCH * sizeof(int)); // 计算校正子(异或运算) int syndrome[3] = { 0 }; for (int j = 0; j < 3; j++) { for (int k = 0; k < N_BCH; k++) { if (H[j][k]) { syndrome[j] ^= received[k]; } } } // 计算误位置索引 (0-7) int error_index = syndrome[0] * 4 + syndrome[1] * 2 + syndrome[2]; int error_loc = error_pattern[error_index]; // 如果有误且位置有效,则纠正 if (error_loc >= 0 && error_loc < N_BCH) { received[error_loc] ^= 1; // 翻转误位 } // 提取信息位 for (int j = 0; j < K_BCH; j++) { output[i * K_BCH + j] = received[j]; } } } // 计算误码率 double calculate_ber(const int* original, const int* received, int length) { if (length <= 0) return 0.0; // 避免除以 int errors = 0; for (int i = 0; i < length; i++) { if (original[i] != received[i]) { errors++; } } return (double)errors / length; } int main() { // 设置随机种子 srand((unsigned int)time(NULL)); // 参数初始化 const int n = 1000000; // 数据长度(比特数) const double SNR_dB_start = 0.0; const double SNR_dB_end = 10.0; const double SNR_dB_step = 1.0; // 增加步长以加快测试 const int num_snr = (int)((SNR_dB_end - SNR_dB_start) / SNR_dB_step) + 1; // 动态分配存储BER结果的数组 double* BER_encoded = (double*)malloc(num_snr * sizeof(double)); double* BER_theory = (double*)malloc(num_snr * sizeof(double)); double* BER_test = (double*)malloc(num_snr * sizeof(double)); if (!BER_encoded || !BER_theory || !BER_test) { fprintf(stderr, "内存分配失败\n"); exit(1); } // 生成随机数据 int* data = (int*)malloc(n * sizeof(int)); for (int i = 0; i < n; i++) { data[i] = rand() % 2; } // BCH编码参数 const int num_blocks = n / K_BCH; // 完整块数 // BCH编码 int* encoded_bits = (int*)malloc(num_blocks * N_BCH * sizeof(int)); if (!encoded_bits) { fprintf(stderr, "编码内存分配失败\n"); exit(1); } bch_encode(data, encoded_bits, num_blocks); const int encoded_length = num_blocks * N_BCH; // BPSK调制(0->-1, 1->1) double* BPSK_encoded = (double*)malloc(encoded_length * sizeof(double)); for (int i = 0; i < encoded_length; i++) { BPSK_encoded[i] = encoded_bits[i] ? 1.0 : -1.0; } // 未编码数据的BPSK调制 double* BPSK_test = (double*)malloc(n * sizeof(double)); for (int i = 0; i < n; i++) { BPSK_test[i] = data[i] ? 1.0 : -1.0; } printf("开始仿真...数据长度: %d bits, SNR范围: %.1f dB 到 %.1f dB\n", n, SNR_dB_start, SNR_dB_end); printf("编码方案: BCH(%d,%d), 纠能力: %d bit\n", N_BCH, K_BCH, T_BCH); // 主循环:针对不同的SNR计算BER for (int z = 0; z < num_snr; z++) { double snr_db = SNR_dB_start + z * SNR_dB_step; double snr_lin = pow(10.0, snr_db / 10.0); // 关键:确保相同Eb/N0下的公平比较 double noise_var = 1.0 / (2.0 * snr_lin); // 未编码的噪声方差 double noise_std = sqrt(noise_var); // 编码系统的噪声方差(考虑码率损失) double noise_var_encoded = 1.0 / (2.0 * snr_lin * (double)K_BCH / N_BCH); double noise_std_encoded = sqrt(noise_var_encoded); // --------------------------------------------------- // 编码部分处理 // --------------------------------------------------- double* noisy_encoded = (double*)malloc(encoded_length * sizeof(double)); int* demod_encoded = (int*)malloc(encoded_length * sizeof(int)); int* decoded_bits = (int*)malloc(num_blocks * K_BCH * sizeof(int)); // 添加高斯噪声 for (int i = 0; i < encoded_length; i++) { noisy_encoded[i] = BPSK_encoded[i] + gaussrand(0.0, noise_std_encoded); } // BPSK解调(硬判决) for (int i = 0; i < encoded_length; i++) { demod_encoded[i] = (noisy_encoded[i] > 0.0) ? 1 : 0; } // BCH解码 bch_decode(demod_encoded, decoded_bits, num_blocks); // 计算编码BER BER_encoded[z] = calculate_ber(data, decoded_bits, num_blocks * K_BCH); // 释放内存 free(noisy_encoded); free(demod_encoded); free(decoded_bits); // --------------------------------------------------- // 未编码部分处理 // --------------------------------------------------- double* noisy_test = (double*)malloc(n * sizeof(double)); int* demod_test = (int*)malloc(n * sizeof(int)); // 添加高斯噪声 for (int i = 0; i < n; i++) { noisy_test[i] = BPSK_test[i] + gaussrand(0.0, noise_std); } // BPSK解调(硬判决) for (int i = 0; i < n; i++) { demod_test[i] = (noisy_test[i] > 0.0) ? 1 : 0; } // 计算未编码BER BER_test[z] = calculate_ber(data, demod_test, n); // 计算理论BER (未编码) BER_theory[z] = 0.5 * erfc(sqrt(snr_lin)); // 释放内存 free(noisy_test); free(demod_test); // 打印进度 printf("SNR = %4.1f dB: 编码BER = %8.3e, 未编码BER = %8.3e, 理论BER = %8.3e\n", snr_db, BER_encoded[z], BER_test[z], BER_theory[z]); } // 输出结果文件(用于绘图) FILE* fp = fopen("ber_results.txt", "w"); if (fp) { fprintf(fp, "SNR_dB BER_theory BER_encoded BER_test\n"); for (int z = 0; z < num_snr; z++) { double snr_db = SNR_dB_start + z * SNR_dB_step; fprintf(fp, "%.1f %.6e %.6e %.6e\n", snr_db, BER_theory[z], BER_encoded[z], BER_test[z]); } fclose(fp); printf("\n结果已保存到 ber_results.txt\n"); // 分析编码增益 int coding_gain_point = -1; for (int z = num_snr - 1; z >= 0; z--) { if (BER_encoded[z] < BER_test[z]) { coding_gain_point = z; break; } } if (coding_gain_point >= 0) { double snr_db = SNR_dB_start + coding_gain_point * SNR_dB_step; printf("-> 在 %.1f dB 处观察到编码增益: 编码BER=%.2e < 未编码BER=%.2e\n", snr_db, BER_encoded[coding_gain_point], BER_test[coding_gain_point]); } else { printf("-> 警告: 未检测到编码增益\n"); printf(" 可能原因:\n"); printf(" - 解码算法实现问题\n"); printf(" - SNR范围选择不当(需要在更高SNR区域仿真)\n"); printf(" - 数据长度不足(当前为%d比特)\n", n); printf(" 建议: 尝试设置SNR_dB_end=15.0并增加数据长度\n"); } } else { printf("保存结果到文件失败\n"); } // 释放所有内存 free(BER_encoded); free(BER_theory); free(BER_test); free(data); free(encoded_bits); free(BPSK_encoded); free(BPSK_test); return 0; }
07-20
private void button1_Click(object sender, EventArgs e) { int wz = pathname.LastIndexOf(@"\"); string pathsjtxt = pathname.Substring(0, wz + 1);//pathsjtxt是数据表路径的意思 StreamReader sr1 = new StreamReader(pathsjtxt + @"\初始数据.txt"); string strs1 = ""; while ((strs1 = sr1.ReadLine()) != null) { string[] str = strs1.Split(','); if (str[0].ToString() == "Q") { Q = double.Parse(str[1]); } if (str[0].ToString() == "H") { H = double.Parse(str[1]); } if (str[0].ToString() == "hs") { hs = double.Parse(str[1]); } if (str[0].ToString() == "b") { b = double.Parse(str[1]); } if (str[0].ToString() == "m1") { m1 = double.Parse(str[1]); } if (str[0].ToString() == "V") { V = double.Parse(str[1]); } if (str[0].ToString() == "g") { g = double.Parse(str[1]); } if (str[0].ToString() == "m") { m = double.Parse(str[1]); } } sr1.Close(); double bs = 8; N = double.Parse(textBox1.Text); const double step = 0.1;// B0每次增加0.1 const double tolerance = 1e-6;// 函数相等容差 const double maxB0 = 10000.0;// B0最大值 const double minB0 = 0;// B0最小值 double B0 = step;//从0.1开始(避免误) bool solutionFound = false; double solution = double.NaN; if (textBox1.Text == "1") { while (B0 <= maxB0 && B0 >= minB0) { b0 = B0 / N; σ = Math.Round((2.31) * hs / H0 * Math.Pow((1 - hs / H0), 0.4), 3); H0 = Math.Round(H + Math.Pow(V, 2) / 2 / g, 3); double fValue = 1 - 0.171 * (1 - b0 / bs) * Math.Pow(b0 / bs, 1 / 4); double gValue = Q / (B0 * σ * m * Math.Sqrt(2 * g) * Math.Pow(H0, 3 / 2)); // 检查函数值是否在容差范围内相等 if (Math.Abs(fValue - gValue) < tolerance) { solution = B0; solutionFound = true; break; } B0 += step; B0 = Math.Round(B0, 2); // 处理浮点精度问题 } } WriteToSpecificPosition(pathsjtxt + @"\初始数据.txt", 19, 2, B0.ToString()); ε = 1 - 0.171 * (1 - b0 / bs) * Math.Pow(b0 / bs, 1 / 4); WriteToSpecificPosition(pathsjtxt + @"\初始数据.txt", 13, 2, ε.ToString()); MessageBox.Show("计算完成"); }以上代码求B0值有什么问题吗
最新发布
07-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值