ch8:Metal
再回顾一下上一章中求撞击点颜色的Color()方法:
Vec3 Color(const Ray& r, Hitable *world)
{
hit_record rec;
if (world->hit(r, 0.0, FLT_MAX, rec))
{
Vec3 target = rec.p + rec.normal + RandomInUnitSphere();
//递归,每次吸收50%的能量
return 0.5f*Color(Ray(rec.p, target - rec.p), world);
}
else
{
//绘制背景
Vec3 unit_direction = unit_vector(r.direction());
float t = 0.5f*(unit_direction.y() + 1.0f);
//(1-t)*白色+t*蓝色,结果是一个蓝白的渐变
return (1.0f - t)*Vec3(1.0f, 1.0f, 1.0f) + t*Vec3(0.5f, 0.7f, 1.0f);
}
}
这里我们给球体的是Diffuse材质,反射方向是随机的,反射率是0.5,即每次光线射入吸收该光线颜色(三个通道)的50%,所以球体会有灰色的趋向(灰色即RGB三值近似)。现实中的Diffuse材质的物体,都有其自身的颜色,其反射率等参数各不相同,为了方便,现在我们把材质也抽象为一个类:
#pragma once
#include "Hitable.h"
//通过入射光线,计算反射光线
Vec3 Reflect(const Vec3& v, const Vec3& n)
{
return v - 2 * dot(v, n)*n;
}
//生成随机方向的标准向量
Vec3 RandomInUnitSphere()
{
Vec3 p;
do {
p = 2.0f * Vec3((rand() % 100 / float(100)), (rand() % 100 / float(100)), (rand() % 100 / float(100))) - Vec3(1.0f, 1.0f, 1.0f);
} while (dot(p, p) >= 1.0f);
return p;
}
//抽象出的材质类
class Material {
public:
virtual bool Scatter(const Ray& r_in, const hit_record& rec, Vec3& attenuation, Ray& scattered) const = 0;
};
//漫反射材质
class Lambertian : public Material {
public:
Lambertian(const Vec3& a):albedo(a){}
virtual bool Scatter(const Ray& r_in, const hit_record& rec, Vec3& attenuation, Ray& scattered) const {
Vec3 target = rec.p + rec.normal + RandomInUnitSphere();
scattered = Ray(rec.p, target - rec.p);
attenuation = albedo;
return true;
}
Vec3 albedo;
};
//镜面反射材质
class Metal : public Material {
public:
Metal(const Vec3& a, float f) : albedo(a) { if (f < 1) fuzz = f; else fuzz = 1; }
virtual bool Scatter(const Ray& r_in, const hit_record& rec, Vec3& attenuation, Ray& scattered) const
{
Vec3 reflected = Reflect(unit_vector(r_in.direction()), rec.normal);
scattered = Ray(rec.p, reflected + fuzz*RandomInUnitSphere());
attenuation = albedo;
return (dot(scattered.direction(), rec.normal) > 0);
}
Vec3 albedo;
float fuzz;
};
将求反射光线的部分放到了材质类的Scatter()方法里,每个材质可以自己定义其反射光线。
同时应注意到我们添加了新的材质类型:Metal,用来表现发生镜面反射的材质。
同时修改Main方法为:
Vec3 Color(const Ray& r, Hitable *world, int depth)
{
hit_record rec;
if (world->hit(r, 0.001f, FLT_MAX, rec))
{
Ray scattered;
Vec3 attenuation;
if (depth < 50 && rec.mat_ptr->Scatter(r, rec, attenuation, scattered)) {
return attenuation*Color(scattered, world, depth + 1);
}
else {
return Vec3(0.0f, 0.0f, 0.0f);
}
}
else
{
//绘制背景
Vec3 unit_direction = unit_vector(r.direction());
float t = 0.5f*(unit_direction.y() + 1.0f);
//(1-t)*白色+t*蓝色,结果是一个蓝白的渐变
return (1.0f - t)*Vec3(1.0f, 1.0f, 1.0f) + t*Vec3(0.5f, 0.7f, 1.0f);
}
}
int main()
{
ofstream outfile;
outfile.open("ch8Image_fuzz.ppm");
int nx = 200;
int ny = 100;
//采样次数
int ns = 100;
outfile << "P3\n" << nx << " " << ny << "\n255\n";
Hitable *list[4];
list[0] = new Sphere(Vec3(0.0f, 0.0f, -1.0f), 0.5f, new Lambertian(Vec3(0.8f, 0.3f, 0.3f)));
list[1] = new Sphere(Vec3(0.0f, -100.5f, -1.0f), 100.0f, new Lambertian(Vec3(0.8f, 0.8f, 0.0f)));
list[2] = new Sphere(Vec3(1.0f, 0.0f, -1.0f), 0.5f, new Metal(Vec3(0.8f, 0.6f, 0.2f),0.3f));
list[3] = new Sphere(Vec3(-1.0f, 0.0f, -1.0f), 0.5f, new Metal(Vec3(0.8f, 0.8f, 0.8f),1.0f));
Hitable *world = new HitableList(list, 4);
Camera cam;
//随机数引擎
default_random_engine reng;
uniform_real_distribution<float> uni_dist(0.0f, 1.0f);
for (int j = ny - 1; j >= 0; j--)
{
for (int i = 0; i < nx; i++)
{
Vec3 col(0.0f, 0.0f, 0.0f);
//每个区域采样ns次
for (int s = 0; s < ns; s++)
{
float u = float(i + uni_dist(reng)) / float(nx);
float v = float(j + uni_dist(reng)) / float(ny);
Ray r = cam.getRay(u,v);
//Vec3 p = r.point_at_parameter(2.0);
//将本区域((u,v)到(u+1,v+1))的颜色值累加
col += Color(r, world, 0);
}
//获得区域的颜色均值
col /= float(ns);
//gamma矫正
col = Vec3(sqrt(col[0]), sqrt(col[1]), sqrt(col[2]));
int ir = int(255.99*col[0]);
int ig = int(255.99*col[1]);
int ib = int(255.99*col[2]);
outfile << ir << " " << ig << " " << ib << "\n";
}
}
outfile.close();
return 0;
}
渲染结果如图:
同样的,我也作死渲了一个高清版: