import torch.nn as nn
class SENet(nn.Module):
'''
input:(batch_size, chs, h, w)
output:(batch_size, chs, h, w)
'''
def __init__(self, chs, reduction=4):
super(SENet, self).__init__()
self.average_pooling = nn.AdaptiveAvgPool2d(output_size=(1, 1))
# (batch_size, chs, h, w) -> (batch, chs, 1, 1)
self.fc = nn.Sequential(
# First reduce dimension, then raise dimension.
# Add nonlinear processing to fit the correlation between channels
nn.Linear(chs, chs // reduction),
nn.ReLU(inplace=True),
nn.Linear(chs // reduction, chs)
)
self.activation = nn.Sigmoid() # Get the weight of each channel
def forward(self, x):
tmp = x
batch_size, chs, h, w = x.shape
x = self.average_pooling(x).view(batch_size, chs)
# (batch_size, chs, h, w) -> (batch, chs, 1, 1) -> (batch, chs)
x = self.fc(x).view(batch_size, chs, 1, 1)
# (batch, chs) -> (batch, chs, 1, 1)
# x = torch.clamp(x, min=0, max=1)
# if min =< elem <= max, new_elem = elem, if elem > max, new_elem = max, if elem < min, new_elem = min
x = self.activation(x)
return x * tmp # x: (batch_size, chs, 1, 1), tmp: (batch_size, chs, h, w)
PyTorch实现SENet(注意力机制)
最新推荐文章于 2024-04-09 02:27:24 发布
该博客介绍了一个名为SENet的网络结构,它通过通道注意力机制来增强特征表示能力。SE模块首先进行全局平均池化,然后通过线性变换调整通道维度,再通过Sigmoid激活函数得到每个通道的权重,最后将权重乘以原始特征图以提升模型对通道间信息的敏感度。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
1237

被折叠的 条评论
为什么被折叠?



