130. Surrounded Regions 417. Pacific Atlantic Water Flow

文章介绍了两种在二维矩阵中进行区域操作的算法:使用DFS遍历并标记被X包围的O区域,以及判断哪些网格点能同时通往太平洋和大西洋。这两种算法都涉及到深度优先搜索策略和边缘处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

130. Surrounded Regions

Given an m x n matrix board containing 'X' and 'O'capture all regions that are 4-directionally surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

Mark all the 'O' islands near the edges with 'A' , then traverse the whole map, and if we come across an 'O' that hasn't been marked, then just change it to an 'X'.

class Solution:
    def solve(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        m = len(board)
        n = len(board[0])
        self.visited = [[False] * n for _ in range(m)]
        self.dirs = [(1,0),(-1,0),(0,1),(0,-1)]

        for i in range(m):
            self.dfs(board, i, 0)
            self.dfs(board, i, n -1)
        for j in range(n):
            self.dfs(board, 0, j)
            self.dfs(board, m - 1, j)
        
        for i in range(m):
            for j in range(n):
                if not self.visited[i][j] and board[i][j] == "O":
                    board[i][j] = "X"

        for i in range(m):
            self.dfs(board, i, 0)
            self.dfs(board, i, n -1)
        for j in range(n):
            self.dfs(board, 0, j)
            self.dfs(board, m - 1, j)
        

    
    def dfs(self, board, x, y):
        if x < 0 or x >= len(board) or y < 0 or y >= len(board[0]) or self.visited[x][y] or board[x][y] == "X":
            return
        self.visited[x][y] = True
        if board[x][y] == "O":
            board[x][y] = "A"
        if board[x][y] == "A":
            board[x][y] = "O"
        for _dir in self.dirs:
            self.dfs(board, x + _dir[0], y + _dir[1])

417. Pacific Atlantic Water Flow

There is an m x n rectangular island that borders both the Pacific Ocean and Atlantic Ocean. The Pacific Ocean touches the island's left and top edges, and the Atlantic Ocean touches the island's right and bottom edges.

The island is partitioned into a grid of square cells. You are given an m x n integer matrix heights where heights[r][c] represents the height above sea level of the cell at coordinate (r, c).

The island receives a lot of rain, and the rain water can flow to neighboring cells directly north, south, east, and west if the neighboring cell's height is less than or equal to the current cell's height. Water can flow from any cell adjacent to an ocean into the ocean.

Return 2D list of grid coordinates result where result[i] = [ri, ci] denotes that rain water can flow from cell (ri, ci) to both the Pacific and Atlantic oceans.

It is possible to start from the edge of the Pacific and the Atlantic and mark the cells that are reachable from both oceans.

Finally, it is enough to find the coordinates of the grid where both can be reached.

Time complexity: O(m x n)

Space complexity: O(m x n)

DFS:

class Solution:
    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        m = len(heights)
        n = len(heights[0])
        self.dirs = [(1,0), (-1,0), (0,1), (0, -1)]
        self.ans_1 = [[0] * n for _ in range(m)]
        self.ans_2 = [[0] * n for _ in range(m)]
        result = []


        for i in range(m):
            self.dfs_1(heights, i, 0)
            self.dfs_2(heights, i, n - 1)
        
        for j in range(n):
            self.dfs_1(heights, 0, j)
            self.dfs_2(heights, m - 1, j)
        
        for i in range(m):
            for j in range(n):
                if self.ans_1[i][j] and self.ans_2[i][j]:
                    result.append([i,j])
        return result
        
    
    def dfs_1(self, heights, x, y):
        if not self.ans_1[x][y]:
            self.ans_1[x][y] = 1
            for _dir in self.dirs:
                x1 = x + _dir[0]
                y1 = y + _dir[1]
                if 0 <= x1 < len(heights) and 0 <= y1 < len(heights[0]) and heights[x][y] <= heights[x1][y1]:
                    self.dfs_1(heights, x1, y1)
    
    def dfs_2(self, heights, x, y):
        if not self.ans_2[x][y]:
            self.ans_2[x][y] = 1
            for _dir in self.dirs:
                x1 = x + _dir[0]
                y1 = y + _dir[1]
                if 0 <= x1 < len(heights) and 0 <= y1 < len(heights[0]) and heights[x][y] <= heights[x1][y1]:    
                    self.dfs_2(heights, x1, y1)

simplified:

class Solution:
    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        m,n=len(heights),len(heights[0])
        res=[]
        pacific = [[False]*n for _ in range(m)]
        atlantic = [[False]*n for _ in range(m)] 
        for i in range(m):
            self.DFS(i,0,pacific,heights)
            self.DFS(i,n-1,atlantic,heights)
        for j in range(n):
            self.DFS(0,j,pacific,heights)
            self.DFS(m-1,j,atlantic,heights)
        for i in range(m):
            for j in range(n):
                if pacific[i][j] and atlantic[i][j]:
                    res.append([i,j])
        return res

    def DFS(self,i,j,visited,heights):
        if visited[i][j]:
            return
        visited[i][j]=True
        directions = [(0,1),(0,-1),(1,0),(-1,0)]
        for step_i,step_j in directions:
            new_i,new_j=i+step_i,j+step_j
            if 0<=new_i<len(heights) and 0<=new_j<len(heights[0]) and heights[new_i][new_j]>=heights[i][j]:
                self.DFS(new_i,new_j,visited,heights)

 

BFS:

class Solution:
    def __init__(self):
        self.position = [[-1, 0], [0, 1], [1, 0], [0, -1]]

    # heights:题目给定的二维数组,visited:记录这个位置可以到哪条河
    def bfs(self, heights: List[List[int]], queue: deque, visited: List[List[List[int]]]):
        while queue:
            curPos = queue.popleft()
            for current in self.position:
                row, col, sign = curPos[0] + current[0], curPos[1] + current[1], curPos[2]
                # 越界
                if row < 0 or row >= len(heights) or col < 0 or col >= len(heights[0]): continue
                # 不满足条件或已经访问过
                if heights[row][col] < heights[curPos[0]][curPos[1]] or visited[row][col][sign]: continue
                visited[row][col][sign] = True
                queue.append([row, col, sign])

    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        rowSize, colSize = len(heights), len(heights[0])
        # visited 记录 [row, col] 位置是否可以到某条河,可以为 true,反之为 false;
        # 假设太平洋的标记为 1,大西洋为 0
        # ans 用来保存满足条件的答案
        ans, visited = [], [[[False for _ in range(2)] for _ in range(colSize)] for _ in range(rowSize)]
        # 队列,保存的数据为 [行号, 列号, 标记]
        # 假设太平洋的标记为 1,大西洋为 0
        queue = deque()
        for row in range(rowSize):
            visited[row][0][1] = True
            visited[row][colSize - 1][0] = True
            queue.append([row, 0, 1])
            queue.append([row, colSize - 1, 0])
        for col in range(0, colSize):
            visited[0][col][1] = True
            visited[rowSize - 1][col][0] = True
            queue.append([0, col, 1])
            queue.append([rowSize - 1, col, 0])
        self.bfs(heights, queue, visited)	# 广度优先遍历
        for row in range(rowSize):
            for col in range(colSize):
                # 如果该位置即可以到太平洋又可以到大西洋,就放入答案数组
                if visited[row][col][0] and visited[row][col][1]:
                    ans.append([row, col])
        return ans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值